The standard form for a parabola with vertex [tex]\((h, k)\)[/tex] and an axis of symmetry of [tex]\(y=k\)[/tex] is:
[tex]\[
(y-k)^2 = 4p(x-h)
\][/tex]

The description below is for a parabola. Write it in standard form.

When answering the questions, type coordinates with parentheses and separated by a comma like this [tex]\((x, y)\)[/tex]. If a value is a non-integer (such as a fraction or a square root), then type it as a decimal rounded to the nearest hundredth.

Vertex: [tex]\((2, 2)\)[/tex]
Directrix: [tex]\(x = 2 - \sqrt{2}\)[/tex]
Focus: [tex]\((2 + \sqrt{2}, 2)\)[/tex]

The value for [tex]\(p\)[/tex] is:

The value for [tex]\(h\)[/tex] is:

The value for [tex]\(k\)[/tex] is:



Answer :

To express the given parabola in standard form [tex]\((y - k)^2 = 4p(x - h)\)[/tex], we need to determine the values for [tex]\(p\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex] based on the given vertex, directrix, and focus.

Given:
- Vertex [tex]\((h, k) = (2, 2)\)[/tex]
- Directrix [tex]\(x = 2 - \sqrt{2}\)[/tex]
- Focus [tex]\((2 + \sqrt{2}, 2)\)[/tex]

### Step-by-Step Solution:

1. Identify the coordinates for vertex [tex]\((h, k)\)[/tex]:
The vertex is provided as [tex]\((2, 2)\)[/tex]. Therefore, the values for [tex]\(h\)[/tex] and [tex]\(k\)[/tex] are:
[tex]\[ h = 2 \][/tex]
[tex]\[ k = 2 \][/tex]

2. Determine the value for [tex]\(p\)[/tex]:
The value for [tex]\(p\)[/tex] is the distance from the vertex to the directrix or the focus. Since the focus is at [tex]\((2 + \sqrt{2}, 2)\)[/tex], we calculate the horizontal distance from the vertex to the focus:
[tex]\[ p = (2 + \sqrt{2}) - 2 = \sqrt{2} \approx 1.4142135623730951 \quad (\text{rounded to the nearest hundredth: } 1.41) \][/tex]

### Conclusion:

- The value for [tex]\(p\)[/tex] is:
[tex]\[ p = 1.41 \][/tex]

- The value for [tex]\(h\)[/tex] is:
[tex]\[ h = 2 \][/tex]

- The value for [tex]\(k\)[/tex] is:
[tex]\[ k = 2 \][/tex]

Now we can write the equation of the parabola in standard form:
[tex]\[ (y - 2)^2 = 4 \cdot 1.41 \cdot (x - 2) \][/tex]

Thus, the final equation in standard form is:
[tex]\[ (y - 2)^2 = 5.64 \cdot (x - 2) \][/tex]