Gas Laws Fact Sheet
\begin{tabular}{|l|l|}
\hline Ideal gas law & [tex]$P V=n R T$[/tex] \\
\hline \multirow{3}{*}{Ideal gas constant} & [tex]$R=8.314 \frac{L \cdot kPa}{mol \cdot K}$[/tex] \\
& or \\
\hline & [tex]$R=0.0821 \frac{L \cdot atm}{mol \cdot K}$[/tex] \\
\hline Standard atmospheric pressure & [tex]$1 atm=101.3 kPa$[/tex] \\
\hline
\end{tabular}

Type the correct answer in the box. Express your answer to three significant figures.

A 75.0-liter canister contains 15.82 moles of argon at a pressure of 546.8 kilopascals. What is the temperature of the canister?

The temperature of the canister is [tex]$\square$[/tex] K.



Answer :

Let's solve this step-by-step using the ideal gas law, [tex]\( PV = nRT \)[/tex].

1. Identify the given values:
- Volume, [tex]\( V = 75.0 \)[/tex] liters
- Moles of argon, [tex]\( n = 15.82 \)[/tex] moles
- Pressure, [tex]\( P = 546.8 \)[/tex] kPa
- Ideal gas constant, [tex]\( R = 8.314 \frac{L\cdot kPa}{mol\cdot K} \)[/tex]

2. Rearrange the ideal gas law to solve for temperature [tex]\( T \)[/tex]:
[tex]\[ PV = nRT \implies T = \frac{PV}{nR} \][/tex]

3. Substitute the given values into the equation:
[tex]\[ T = \frac{(546.8 \, \text{kPa}) \times (75.0 \, \text{L})}{(15.82 \, \text{moles}) \times (8.314 \frac{L\cdot kPa}{mol\cdot K})} \][/tex]

4. Perform the calculation.
[tex]\[ T \approx 311.798 \, \text{K} \][/tex]

5. Express the answer to three significant figures:
[tex]\[ T \approx 311.798 \rightarrow 311.798 \, \text{K} \][/tex]

Therefore, the temperature of the canister is [tex]\( 311.798 \)[/tex] K.