Type the correct answer in each box. Use numerals instead of words.

Simplify the following polynomial expression.

[tex]\[ (5x^2 + 13x - 4) - (17x^2 + 7x - 19) + (5x - 7)(3x + 1) \][/tex]

[tex]\[ \square x^2 - \square x + \square \][/tex]



Answer :

To simplify the polynomial expression [tex]\((5x^2 + 13x - 4) - (17x^2 + 7x - 19) + (5x - 7)(3x + 1)\)[/tex], follow these steps:

1. Subtract the second polynomial from the first:

[tex]\[ (5x^2 + 13x - 4) - (17x^2 + 7x - 19) \][/tex]

Distribute the negative sign:

[tex]\[ 5x^2 + 13x - 4 - 17x^2 - 7x + 19 \][/tex]

Combine like terms:

[tex]\[ (5x^2 - 17x^2) + (13x - 7x) + (-4 + 19) = -12x^2 + 6x + 15 \][/tex]

2. Expand the product [tex]\((5x - 7)(3x + 1)\)[/tex]:

[tex]\[ (5x - 7)(3x + 1) \][/tex]

Use the distributive property:

[tex]\[ 5x \cdot 3x + 5x \cdot 1 - 7 \cdot 3x - 7 \cdot 1 = 15x^2 + 5x - 21x - 7 \][/tex]

Combine like terms:

[tex]\[ 15x^2 + (5x - 21x) - 7 = 15x^2 - 16x - 7 \][/tex]

3. Add the results from the subtraction and the multiplication:

Combine [tex]\(-12x^2 + 6x + 15\)[/tex] and [tex]\(15x^2 - 16x - 7\)[/tex]:

[tex]\[ (-12x^2 + 6x + 15) + (15x^2 - 16x - 7) \][/tex]

Combine like terms:

[tex]\[ (-12x^2 + 15x^2) + (6x - 16x) + (15 - 7) = 3x^2 - 10x + 8 \][/tex]

So, the simplified polynomial expression is:

[tex]\[ 3x^2 - 10x + 8 \][/tex]

Thus, the correct terms to fill in the boxes are:

[tex]\[ \boxed{3} x^2 - \boxed{10} x + \boxed{8} \][/tex]