Surface Area of Cylinder: [tex]2 \pi r h + 2 \pi r^2[/tex]

Where [tex]r[/tex] is the radius of the cylinder and [tex]h[/tex] is the height of the cylinder.

Find the surface area when [tex]r[/tex] is 8 inches and [tex]h[/tex] is 8 inches.

A. [tex]154 \pi[/tex] in [tex]^2[/tex]

B. [tex]160 \pi[/tex] in [tex]^2[/tex]

C. [tex]288 \pi[/tex] in [tex]^2[/tex]

D. [tex]256 \pi[/tex] in [tex]^2[/tex]



Answer :

To determine the surface area of the cylinder using the given dimensions and formula, we will follow these steps:

1. Identify the given values: The radius [tex]\( r \)[/tex] is 8 inches and the height [tex]\( h \)[/tex] is 8 inches.

2. Recall the formula for the surface area of a cylinder:
[tex]\[ \text{Surface Area} = 2 \pi r h + 2 \pi r^2 \][/tex]

3. Substitute the given values into the formula:
[tex]\[ \text{Surface Area} = 2 \pi (8) (8) + 2 \pi (8)^2 \][/tex]

4. Simplify the terms:
[tex]\[ 2 \pi (8) (8) = 2 \pi \cdot 64 = 128 \pi \][/tex]
[tex]\[ 2 \pi (8)^2 = 2 \pi \cdot 64 = 128 \pi \][/tex]

5. Add the simplified terms:
[tex]\[ 128 \pi + 128 \pi = 256 \pi \][/tex]

Therefore, the surface area of the cylinder is [tex]\( 256 \pi \)[/tex] square inches.

Hence, the correct answer is:
D. [tex]\( 256 \pi \)[/tex] in [tex]\( ^2 \)[/tex]