For the function [tex]$f(t) = P e^{rt}$[/tex], if [tex]$P = 3$[/tex] and [tex][tex]$r = 0.03$[/tex][/tex], then what is the value of [tex]$f(3)$[/tex] to the nearest tenth?

A. 1.1
B. 2.5
C. 3.3
D. 7.4



Answer :

To find the value of [tex]\( f(t) \)[/tex] where [tex]\( f(t) = P e^{rt} \)[/tex], given that [tex]\( P = 3 \)[/tex], [tex]\( r = 0.03 \)[/tex], and [tex]\( t = 3 \)[/tex], let's break down the process step by step.

1. Plug in the values:
- [tex]\( P = 3 \)[/tex]
- [tex]\( r = 0.03 \)[/tex]
- [tex]\( t = 3 \)[/tex]

2. Set up the function with these values:
[tex]\[ f(3) = 3 \cdot e^{0.03 \cdot 3} \][/tex]

3. Simplify the exponent:
[tex]\[ r \times t = 0.03 \times 3 = 0.09 \][/tex]
Therefore, the function becomes:
[tex]\[ f(3) = 3 \cdot e^{0.09} \][/tex]

4. Evaluate the exponential part [tex]\( e^{0.09} \)[/tex]:
[tex]\[ e^{0.09} \approx 1.094174 \][/tex]

5. Multiply by [tex]\( P = 3 \)[/tex]:
[tex]\[ f(3) = 3 \cdot 1.094174 \approx 3.282522 \][/tex]

6. Round the result to the nearest tenth:
[tex]\[ 3.282522 \approx 3.3 \][/tex]

Thus, the value of [tex]\( f(3) \)[/tex] to the nearest tenth is:
[tex]\[ \boxed{3.3} \][/tex]

So the correct answer is:
C. 3.3