Type the correct answer in the box.

The pressure inside a tire is measured as [tex]$28.0 \frac{\text{pounds}}{\text{inch}^2}$[/tex]. What is its pressure in [tex]\frac{\text{newtons}}{\text{centimeter}^2}[/tex]?
1 pound = 4.45 newtons
1 inch[tex]^2[/tex] = 6.45 centimeters[tex]^2[/tex]
Express the answer to the correct number of significant figures.

The pressure is [tex]\square \frac{\text{newtons}}{\text{centimeter}^2}[/tex].



Answer :

To convert the pressure inside the tire from pounds per square inch to newtons per square centimeter, we need to use the given conversion factors.

We start with the given pressure:
[tex]\[ 28.0 \frac{\text{pounds}}{\text{inch}^2} \][/tex]

Next, we use the conversion factor from pounds to newtons:
[tex]\[ 1 \text{ pound} = 4.45 \text{ newtons} \][/tex]

So the pressure in newtons per square inch is:
[tex]\[ 28.0 \frac{\text{pounds}}{\text{inch}^2} \times 4.45 \frac{\text{newtons}}{\text{pound}} \][/tex]

Now, we need to convert from square inches to square centimeters. We have:
[tex]\[ 1 \text{ inch}^2 = 6.45 \text{ centimeter}^2 \][/tex]

So the pressure in newtons per centimeter squared is:
[tex]\[ \left( 28.0 \frac{\text{pounds}}{\text{inch}^2} \times 4.45 \frac{\text{newtons}}{\text{pound}} \right) \bigg/ 6.45 \frac{\text{centimeter}^2}{\text{inch}^2} \][/tex]

Combining these steps, the pressure in newtons per centimeter squared is:
[tex]\[ 19.317829457364343 \frac{\text{newtons}}{\text{centimeter}^2} \][/tex]

Given that the initial number of significant figures from the measured pressure is three (from "28.0"), we should express the final result to three significant figures as well.

Hence, the final pressure in newtons per square centimeter is:
[tex]\[ 19.3 \frac{\text{newtons}}{\text{centimeter}^2} \][/tex]

The pressure is [tex]\( \boxed{19.3} \frac{\text{newtons}}{\text{centimeter}^2} \)[/tex].