Answer :

Let's solve the equation [tex]\( (x - 1) = 2x + 5 \)[/tex] step-by-step:

1. Starting Equation:
[tex]\[ x - 1 = 2x + 5 \][/tex]

2. Isolate the [tex]\(x\)[/tex] term: We want to get all [tex]\(x\)[/tex]-terms on one side, thus we subtract [tex]\(2x\)[/tex] from both sides of the equation:
[tex]\[ x - 1 - 2x = 5 \][/tex]

Simplify the left side:
[tex]\[ -x - 1 = 5 \][/tex]

3. Isolate the constant term: We add 1 to both sides to move the constant term to the right side:
[tex]\[ -x - 1 + 1 = 5 + 1 \][/tex]

Simplify both sides:
[tex]\[ -x = 6 \][/tex]

4. Solve for [tex]\(x\)[/tex]: Finally, we multiply both sides by [tex]\(-1\)[/tex] to isolate [tex]\(x\)[/tex]:
[tex]\[ x = -6 \][/tex]

Thus, the solution to the equation [tex]\( (x - 1) = 2x + 5 \)[/tex] is:
[tex]\[ x = -6 \][/tex]