Answer :
To find out how many times longer Jupiter's orbit is compared to Earth's orbit, we need to divide the length of Jupiter's orbit by the length of Earth's orbit. Here’s the step-by-step process:
1. Identify the orbits:
- Jupiter's orbit: [tex]\(3 \times 10^9\)[/tex] miles
- Earth's orbit: [tex]\(6 \times 10^8\)[/tex] miles
2. Set up the division:
[tex]\[ \text{Ratio} = \frac{\text{Jupiter's orbit}}{\text{Earth's orbit}} = \frac{3 \times 10^9}{6 \times 10^8} \][/tex]
3. Simplify the division:
To simplify [tex]\(\frac{3 \times 10^9}{6 \times 10^8}\)[/tex], observe that [tex]\(10^9\)[/tex] divided by [tex]\(10^8\)[/tex] is [tex]\(10^{9-8} = 10\)[/tex]. Hence:
[tex]\[ \text{Ratio} = \frac{3}{6} \times 10 = \frac{1}{2} \times 10 = 5 \][/tex]
So, Jupiter's orbit is 5 times longer than Earth's orbit.
Therefore, the correct answer is 5.
1. Identify the orbits:
- Jupiter's orbit: [tex]\(3 \times 10^9\)[/tex] miles
- Earth's orbit: [tex]\(6 \times 10^8\)[/tex] miles
2. Set up the division:
[tex]\[ \text{Ratio} = \frac{\text{Jupiter's orbit}}{\text{Earth's orbit}} = \frac{3 \times 10^9}{6 \times 10^8} \][/tex]
3. Simplify the division:
To simplify [tex]\(\frac{3 \times 10^9}{6 \times 10^8}\)[/tex], observe that [tex]\(10^9\)[/tex] divided by [tex]\(10^8\)[/tex] is [tex]\(10^{9-8} = 10\)[/tex]. Hence:
[tex]\[ \text{Ratio} = \frac{3}{6} \times 10 = \frac{1}{2} \times 10 = 5 \][/tex]
So, Jupiter's orbit is 5 times longer than Earth's orbit.
Therefore, the correct answer is 5.