Select the best answer for the question.

If [tex]\angle A[/tex] and [tex]\angle B[/tex] are supplementary and [tex]\angle A = 4x - 8[/tex] and [tex]\angle B = 2x + 2[/tex], what is the value of [tex]x[/tex]?

A. 22
B. 180
C. 43
D. 31



Answer :

To solve for the value of [tex]\( x \)[/tex], given that [tex]\(\angle A\)[/tex] and [tex]\(\angle B\)[/tex] are supplementary and their expressions in terms of [tex]\( x \)[/tex] are [tex]\(\angle A = 4x - 8\)[/tex] and [tex]\(\angle B = 2x + 2\)[/tex], we need to follow these steps:

1. Understand the property of supplementary angles: Supplementary angles are two angles whose measures add up to 180 degrees. Therefore:
[tex]\[ \angle A + \angle B = 180^\circ \][/tex]

2. Substitute the given expressions for [tex]\(\angle A\)[/tex] and [tex]\(\angle B\)[/tex]:
[tex]\[ (4x - 8) + (2x + 2) = 180 \][/tex]

3. Combine like terms:
[tex]\[ 4x - 8 + 2x + 2 = 180 \][/tex]
[tex]\[ 6x - 6 = 180 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
[tex]\[ 6x - 6 = 180 \][/tex]
[tex]\[ 6x = 180 + 6 \][/tex]
[tex]\[ 6x = 186 \][/tex]
[tex]\[ x = \frac{186}{6} \][/tex]

[tex]\[ x = 31 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is 31. The best answer is:

D. 31