Answer :
To evaluate the expression [tex]\( 13 - 0.5w + 6x \)[/tex] when [tex]\( w = 10 \)[/tex] and [tex]\( x = \frac{1}{2} \)[/tex], follow these steps:
1. Start by substituting the values of [tex]\( w \)[/tex] and [tex]\( x \)[/tex] into the expression. Given that [tex]\( w = 10 \)[/tex] and [tex]\( x = \frac{1}{2} \)[/tex], the expression becomes:
[tex]\[ 13 - 0.5 \cdot 10 + 6 \cdot \frac{1}{2} \][/tex]
2. Next, calculate [tex]\( 0.5 \cdot 10 \)[/tex]:
[tex]\[ 0.5 \cdot 10 = 5 \][/tex]
3. Substitute this result back into the expression:
[tex]\[ 13 - 5 + 6 \cdot \frac{1}{2} \][/tex]
4. Now, calculate [tex]\( 6 \cdot \frac{1}{2} \)[/tex]:
[tex]\[ 6 \cdot \frac{1}{2} = 3 \][/tex]
5. Substitute this result into the expression:
[tex]\[ 13 - 5 + 3 \][/tex]
6. Finally, perform the arithmetic operations from left to right:
[tex]\[ 13 - 5 = 8 \][/tex]
[tex]\[ 8 + 3 = 11 \][/tex]
So, the value of the expression [tex]\( 13 - 0.5w + 6x \)[/tex] when [tex]\( w = 10 \)[/tex] and [tex]\( x = \frac{1}{2} \)[/tex] is [tex]\( 11 \)[/tex].
1. Start by substituting the values of [tex]\( w \)[/tex] and [tex]\( x \)[/tex] into the expression. Given that [tex]\( w = 10 \)[/tex] and [tex]\( x = \frac{1}{2} \)[/tex], the expression becomes:
[tex]\[ 13 - 0.5 \cdot 10 + 6 \cdot \frac{1}{2} \][/tex]
2. Next, calculate [tex]\( 0.5 \cdot 10 \)[/tex]:
[tex]\[ 0.5 \cdot 10 = 5 \][/tex]
3. Substitute this result back into the expression:
[tex]\[ 13 - 5 + 6 \cdot \frac{1}{2} \][/tex]
4. Now, calculate [tex]\( 6 \cdot \frac{1}{2} \)[/tex]:
[tex]\[ 6 \cdot \frac{1}{2} = 3 \][/tex]
5. Substitute this result into the expression:
[tex]\[ 13 - 5 + 3 \][/tex]
6. Finally, perform the arithmetic operations from left to right:
[tex]\[ 13 - 5 = 8 \][/tex]
[tex]\[ 8 + 3 = 11 \][/tex]
So, the value of the expression [tex]\( 13 - 0.5w + 6x \)[/tex] when [tex]\( w = 10 \)[/tex] and [tex]\( x = \frac{1}{2} \)[/tex] is [tex]\( 11 \)[/tex].