Solve [tex]$5^{x-4}=7$[/tex] for [tex]$x$[/tex] using the change of base formula [tex]$\log _b y=\frac{\log y}{\log b}$[/tex].

A. 5.209
B. 4.827
C. [tex]$-2.791$[/tex]
D. [tex]$-3.173$[/tex]



Answer :

To solve the equation [tex]\(5^{x-4}=7\)[/tex] for [tex]\(x\)[/tex] using the change of base formula, follow these steps:

1. Rewrite the equation in logarithmic form: To isolate [tex]\(x\)[/tex], we'll first take the logarithm of both sides of the equation. We can use the natural logarithm ([tex]\(\ln\)[/tex]) for this purpose.

[tex]\[ \ln(5^{x-4}) = \ln(7) \][/tex]

2. Simplify the logarithmic expression: Use the logarithmic property [tex]\(\ln(a^b) = b \cdot \ln(a)\)[/tex] to bring down the exponent.

[tex]\[ (x-4) \cdot \ln(5) = \ln(7) \][/tex]

3. Isolate [tex]\(x-4\)[/tex]: To solve for [tex]\(x\)[/tex], divide both sides of the equation by [tex]\(\ln(5)\)[/tex].

[tex]\[ x-4 = \frac{\ln(7)}{\ln(5)} \][/tex]

4. Calculate the logarithmic values: Let’s find the numerical values of [tex]\(\ln(7)\)[/tex] and [tex]\(\ln(5)\)[/tex].

- [tex]\(\ln(7) \approx 1.9459101490553132\)[/tex]
- [tex]\(\ln(5) \approx 1.6094379124341003\)[/tex]

5. Perform the division: Divide [tex]\(\ln(7)\)[/tex] by [tex]\(\ln(5)\)[/tex].

[tex]\[ \frac{1.9459101490553132}{1.6094379124341003} \approx 1.2090619551221675 \][/tex]

So,

[tex]\[ x-4 \approx 1.2090619551221675 \][/tex]

6. Solve for [tex]\(x\)[/tex]: Finally, add 4 to both sides of the equation to isolate [tex]\(x\)[/tex].

[tex]\[ x = 1.2090619551221675 + 4 \approx 5.209061955122167 \][/tex]

Hence, the solution to the equation [tex]\(5^{x-4}=7\)[/tex] is approximately [tex]\(x \approx 5.209\)[/tex].