On the unit circle, where [tex]0\ \textless \ \theta \leq 2 \pi[/tex], when is [tex]\tan \theta[/tex] undefined?

A. [tex]\theta=\pi[/tex] and [tex]\theta=2 \pi[/tex]
B. [tex]\sin \theta=\cos \theta[/tex]
C. [tex]\theta=\frac{\pi}{2}[/tex] and [tex]\theta=\frac{3 \pi}{2}[/tex]
D. [tex]\sin \theta=\frac{1}{\cos \theta}[/tex]



Answer :

To determine when [tex]\(\tan \theta\)[/tex] is undefined on the unit circle for [tex]\(0 < \theta \leq 2\pi\)[/tex], it's important to understand the definition of the tangent function in terms of the sine and cosine functions. The tangent function is given by:

[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]

The tangent function will be undefined whenever the denominator is zero, which occurs when [tex]\(\cos \theta = 0\)[/tex].

On the unit circle, the cosine of an angle equals zero at specific points. Let's identify these points within the interval [tex]\(0 < \theta \leq 2\pi\)[/tex]:

1. The cosine of [tex]\(\theta\)[/tex] is zero at [tex]\(\theta = \frac{\pi}{2}\)[/tex] because [tex]\(\cos \left(\frac{\pi}{2}\right) = 0\)[/tex].
2. Similarly, the cosine of [tex]\(\theta\)[/tex] is also zero at [tex]\(\theta = \frac{3\pi}{2}\)[/tex] because [tex]\(\cos \left(\frac{3\pi}{2}\right) = 0\)[/tex].

Hence, [tex]\(\tan \theta\)[/tex] is undefined at these points. Therefore, the values of [tex]\(\theta\)[/tex] where [tex]\(\tan \theta\)[/tex] is undefined on the unit circle for [tex]\(0 < \theta \leq 2\pi\)[/tex] are:

[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]

Thus, the correct option is:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]