Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match the perfect square trinomials with their factors.

[tex]4a^2 + 4a + 1[/tex]
[tex](2a + 1)(2a + 1)[/tex]

[tex]4a^2 - 4a + 1[/tex]
[tex](2a - 1)(2a - 1)[/tex]

[tex]4 - 4a + a^2[/tex]
[tex](2 - a)(2 - a)[/tex]

[tex]4 + 4a + a^2[/tex]
[tex](2 + a)(2 + a)[/tex]



Answer :

Let's match each perfect square trinomial with its correct pair of factors, as required:

1. Trinomial: [tex]\(4a^2 + 4a + 1\)[/tex]
Factors: [tex]\((2 + a)(2 + a)\)[/tex]
This trinomial can be factored as a square of the binomial [tex]\((2 + a)\)[/tex].

2. Trinomial: [tex]\(4a^2 - 4a + 1\)[/tex]
Factors: [tex]\((2a + 1)(2a + 1)\)[/tex]
This trinomial can be recognized as the square of the binomial [tex]\((2a - 1)\)[/tex].

3. Trinomial: [tex]\(4 - 4a + a^2\)[/tex]
Factors: [tex]\((2a - 1)(2a - 1)\)[/tex]
This is a square trinomial that can be written as the square of [tex]\((2a - 1)\)[/tex].

4. Trinomial: [tex]\(4 - 4a - a^2\)[/tex]
Factors: [tex]\((2 - a)(2 - a)\)[/tex]
This specific trinomial factors into the square of the binomial [tex]\((2 - a)\)[/tex].

5. Trinomial: [tex]\(4 + 4a + a^2\)[/tex]
Factors: [tex]\((2 + a)(2 + a)\)[/tex]
This trinomial can be recognized and factored as the square of [tex]\((2 + a)\)[/tex].

Therefore, the correct matches of trinomials with their factors are:

- [tex]\(4a^2 + 4a + 1 \Rightarrow (2 + a)(2 + a)\)[/tex]
- [tex]\(4a^2 - 4a + 1 \Rightarrow (2a + 1)(2a + 1)\)[/tex]
- [tex]\(4 - 4a + a^2 \Rightarrow (2a - 1)(2a - 1)\)[/tex]
- [tex]\(4 - 4a - a^2 \Rightarrow (2 - a)(2 - a)\)[/tex]
- [tex]\(4 + 4a + a^2 \Rightarrow (2 + a)(2 + a)\)[/tex]

These straighforward factor matches will help solidify understanding of factoring perfect square trinomials.