To solve the given problem, we'll need to simplify the fraction and compare it with the given options.
The fraction to simplify is:
[tex]\[
\frac{-6-(-9)}{8}
\][/tex]
First, simplify the numerator:
[tex]\[
-6 - (-9)
\][/tex]
Since subtracting a negative number is the same as adding its absolute value, we have:
[tex]\[
-6 - (-9) = -6 + 9
\][/tex]
Next, calculate that:
[tex]\[
-6 + 9 = 3
\][/tex]
So, the numerator is 3. This gives us the fraction:
[tex]\[
\frac{3}{8}
\][/tex]
Now, we need to compare this fraction with the given options:
A. [tex]\(-\frac{3}{8}\)[/tex]
B. [tex]\(\frac{3}{8}\)[/tex]
C. [tex]\(-\frac{15}{8}\)[/tex]
D. [tex]\(\frac{15}{8}\)[/tex]
Clearly, the fraction [tex]\(\frac{3}{8}\)[/tex] matches option B.
Thus, the correct answer is:
[tex]\[
\boxed{B}
\][/tex]