Type the correct answer in the box.

Katelyn plans to apply for a [tex]\$10,000[/tex] loan at an interest rate of [tex]5.6\%[/tex] for 5 years. Use the monthly payment formula to complete the statement.

\[ M = \frac{P \left(\frac{r}{12}\right) \left(1 + \frac{r}{12}\right)^{12t}}{\left(1 + \frac{r}{12}\right)^{12t} - 1} \]

where:
\[ M = \text{monthly payment} \]
\[ P = \text{principal} \]
\[ r = \text{interest rate} \]
\[ t = \text{number of years} \]

Rounded to the nearest cent, Katelyn's monthly payment for the loan is [tex]\$ \square[/tex]



Answer :

To determine Katelyn's monthly payment for a \[tex]$10,000 loan at an annual interest rate of 5.6% over 5 years with monthly payments, we use the monthly payment formula: \[ M = \frac{P \times \left( \frac{r}{n} \right) \times (1 + \frac{r}{n})^{n \times t}}{(1 + \frac{r}{n})^{n \times t} - 1} \] where: - \( P \) is the principal amount (\$[/tex]10,000),
- [tex]\( r \)[/tex] is the annual interest rate (0.056),
- [tex]\( t \)[/tex] is the number of years (5),
- [tex]\( n \)[/tex] is the number of payments per year (12).

First, we compute the monthly interest rate:

[tex]\[ \text{Monthly interest rate} = \frac{r}{n} = \frac{0.056}{12} = 0.004666666666666667 \][/tex]

Next, we find the total number of payments:

[tex]\[ \text{Total number of payments} = t \times n = 5 \times 12 = 60 \][/tex]

Now, we plug these values into the formula:

[tex]\[ M = \frac{10000 \times 0.004666666666666667 \times (1 + 0.004666666666666667)^{60}}{(1 + 0.004666666666666667)^{60} - 1} \][/tex]

After solving this expression, we find Katelyn's monthly payment to be:

[tex]\[ M = 191.47 \][/tex]

Hence, rounded to the nearest cent, Katelyn's monthly payment for the loan is \$191.47.