The equation that models the height above or below equilibrium in inches, [tex]\( h \)[/tex], of a spring over time in seconds, [tex]\( t \)[/tex], is

[tex]\[ h = -15 \cos \left( \frac{2 \pi}{5} t \right) \][/tex]

At which times will the spring be at a height of 8 inches above equilibrium? Select all that apply.

A. 4.2 seconds
B. 1.7 seconds
C. 2.9 seconds
D. 0.8 seconds
E. 3.3 seconds



Answer :

To solve for the times when the spring is at a height of [tex]\( h = 8 \)[/tex] inches above equilibrium, we start with the given equation:

[tex]\[ h = -15 \cos \left(\frac{2 \pi}{5} t\right) \][/tex]

We want to find the values of [tex]\( t \)[/tex] when [tex]\( h = 8 \)[/tex]:

[tex]\[ 8 = -15 \cos \left(\frac{2 \pi}{5} t\right) \][/tex]

First, we isolate the cosine term by dividing both sides by [tex]\(-15\)[/tex]:

[tex]\[ \frac{8}{-15} = \cos \left(\frac{2 \pi}{5} t\right) \][/tex]

This simplifies to:

[tex]\[ -\frac{8}{15} = \cos \left(\frac{2 \pi}{5} t\right) \][/tex]

Now, we need to find the angle whose cosine is [tex]\(-\frac{8}{15}\)[/tex]. The principal angle [tex]\( \theta \)[/tex] for which the cosine is a certain value can be found using the inverse cosine function:

[tex]\[ \theta = \cos^{-1} \left(-\frac{8}{15}\right) \][/tex]

Once we have [tex]\( \theta \)[/tex], we need to solve for [tex]\( t \)[/tex] in the original equation argument:

[tex]\[ \frac{2 \pi t}{5} \][/tex]

We have two solutions:

1. [tex]\( \frac{2 \pi t}{5} = \theta \)[/tex]
2. [tex]\( \frac{2 \pi t}{5} = 2\pi - \theta \)[/tex]

Solving for [tex]\( t \)[/tex] in each case:

1. [tex]\( t_1 = \frac{5 \theta}{2 \pi} \)[/tex]
2. [tex]\( t_2 = \frac{5 (2\pi - \theta)}{2 \pi} = 5 - \frac{5 \theta}{2 \pi} \)[/tex]

Next, we compare these [tex]\( t \)[/tex]-values with the given times [tex]\( 4.2 \)[/tex] seconds, [tex]\( 1.7 \)[/tex] seconds, [tex]\( 2.9 \)[/tex] seconds, [tex]\( 0.8 \)[/tex] seconds, and [tex]\( 3.3 \)[/tex] seconds to see which of them satisfy our equations.

Upon evaluating:

- [tex]\( t_1 \approx 1.7 \)[/tex] seconds
- [tex]\( t_2 \approx 3.3 \)[/tex] seconds

Therefore, the times when the spring is at a height of [tex]\( 8 \)[/tex] inches are:

1.7 seconds and 3.3 seconds.

Thus, the correct answers are:

[tex]\[ \boxed{1.7 \ \text{seconds}, \ 3.3 \ \text{seconds}} \][/tex]

These are the times at which the spring will be at a height of 8 inches above equilibrium.