Which are the solutions to [tex]$8 \cos^2 \theta - 3 \cos \theta = 0, \quad 0^{\circ} \leq \theta \leq 180^{\circ}$[/tex]? Select all that apply.

A. [tex]0.0^{\circ}[/tex]
B. [tex]22.0^{\circ}[/tex]
C. [tex]52.0^{\circ}[/tex]
D. [tex]68.0^{\circ}[/tex]
E. [tex]90.0^{\circ}[/tex]



Answer :

To determine the solutions to the equation [tex]\(8 \cos^2 \theta - 3 \cos \theta = 0\)[/tex] in the interval [tex]\(0^\circ \leq \theta \leq 180^\circ\)[/tex], follow these steps:

1. Rewrite the equation in a simpler form:
Let [tex]\( x = \cos \theta \)[/tex]. The equation becomes:
[tex]\[ 8x^2 - 3x = 0 \][/tex]

2. Factor the quadratic equation:
[tex]\[ x(8x - 3) = 0 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad 8x - 3 = 0 \][/tex]
Solving [tex]\( 8x - 3 = 0 \)[/tex]:
[tex]\[ 8x = 3 \implies x = \frac{3}{8} \][/tex]

4. Convert back to [tex]\( \theta \)[/tex]:
Recall [tex]\( x = \cos \theta \)[/tex].

- For [tex]\( \cos \theta = 0 \)[/tex]:
[tex]\[ \theta = 90^\circ \][/tex]

- For [tex]\( \cos \theta = \frac{3}{8} \)[/tex]:
[tex]\[ \theta \approx 68.0^\circ \][/tex]

Therefore, the possible values of [tex]\( \theta \)[/tex] in the interval [tex]\([0^\circ, 180^\circ]\)[/tex] are [tex]\( 90.0^\circ \)[/tex] and [tex]\( 68.0^\circ \)[/tex].

Checking the given choices:
- [tex]\( 0.0^\circ \)[/tex]: Not a solution.
- [tex]\( 22.0^\circ \)[/tex]: Not a solution.
- [tex]\( 52.0^\circ \)[/tex]: Not a solution.
- [tex]\( 68.0^\circ \)[/tex]: Solution.
- [tex]\( 90.0^\circ \)[/tex]: Solution.

Thus, the solutions are [tex]\( 68.0^\circ \)[/tex] and [tex]\( 90.0^\circ \)[/tex].