Answer :
Sure, I'll be happy to provide a step-by-step solution to help you understand the given mathematical expression and find the result.
Given mathematical expression:
[tex]\[ \frac{3 \cdot 5 \cdot 0 + 2 \cdot 810}{3 + 2 + 5} + \frac{5 \cdot 5 \cdot a}{2} \][/tex]
Step 1: Simplify the terms within the numerator of the first fraction.
- The term [tex]\(3 \cdot 5 \cdot 0 = 0\)[/tex].
- The term [tex]\(2 \cdot 810 = 1620\)[/tex].
So, the numerator of the first fraction is:
[tex]\[ 0 + 1620 = 1620 \][/tex]
Step 2: Simplify the denominator of the first fraction.
[tex]\[ 3 + 2 + 5 = 10 \][/tex]
Step 3: Combine the simplified numerator and denominator of the first fraction.
[tex]\[ \frac{1620}{10} = 162 \][/tex]
Step 4: Simplify the second term.
- Note that the second term [tex]\(\frac{5 \cdot 5 \cdot a}{2}\)[/tex] is dependent on the variable [tex]\(a\)[/tex].
So, we have:
[tex]\[ 162 + \frac{5 \cdot 5 \cdot a}{2} \][/tex]
Step 5: Therefore, the simplified form of the given expression, focusing only on the part we can solve without additional information for [tex]\(a\)[/tex], is:
[tex]\[ 162 \][/tex]
So, the specific calculated part of the given expression results in:
[tex]\[ 162 \][/tex]
Given mathematical expression:
[tex]\[ \frac{3 \cdot 5 \cdot 0 + 2 \cdot 810}{3 + 2 + 5} + \frac{5 \cdot 5 \cdot a}{2} \][/tex]
Step 1: Simplify the terms within the numerator of the first fraction.
- The term [tex]\(3 \cdot 5 \cdot 0 = 0\)[/tex].
- The term [tex]\(2 \cdot 810 = 1620\)[/tex].
So, the numerator of the first fraction is:
[tex]\[ 0 + 1620 = 1620 \][/tex]
Step 2: Simplify the denominator of the first fraction.
[tex]\[ 3 + 2 + 5 = 10 \][/tex]
Step 3: Combine the simplified numerator and denominator of the first fraction.
[tex]\[ \frac{1620}{10} = 162 \][/tex]
Step 4: Simplify the second term.
- Note that the second term [tex]\(\frac{5 \cdot 5 \cdot a}{2}\)[/tex] is dependent on the variable [tex]\(a\)[/tex].
So, we have:
[tex]\[ 162 + \frac{5 \cdot 5 \cdot a}{2} \][/tex]
Step 5: Therefore, the simplified form of the given expression, focusing only on the part we can solve without additional information for [tex]\(a\)[/tex], is:
[tex]\[ 162 \][/tex]
So, the specific calculated part of the given expression results in:
[tex]\[ 162 \][/tex]