Rewrite and solve the following expression for clarity:

[tex]\[ \frac{3 \cdot 5 \cdot 0 + 2 \cdot 810}{3 + 2 + 5} + \frac{5 \cdot 5 \cdot a}{2} = \frac{15 + 16 + 26}{10} = \frac{26}{10} = 5.6 \][/tex]

(Note: The original problem contains multiple issues, including mathematical inaccuracies and unclear instructions. The corrected version is provided for clarity, and it should be simplified further for an accurate solution. Additionally, there seems to be non-mathematical text mixed in, which was removed for coherence.)

[tex]\[ \frac{0 + 1620}{10} + \frac{25a}{2} = 5.6 \][/tex]
[tex]\[ 162 + \frac{25a}{2} = 5.6 \][/tex]

Solve for [tex]\( a \)[/tex]:

[tex]\[ 162 + \frac{25a}{2} = 5.6 \][/tex]
[tex]\[ \frac{25a}{2} = 5.6 - 162 \][/tex]
[tex]\[ \frac{25a}{2} = -156.4 \][/tex]
[tex]\[ 25a = -312.8 \][/tex]
[tex]\[ a = -12.512 \][/tex]



Answer :

Sure, I'll be happy to provide a step-by-step solution to help you understand the given mathematical expression and find the result.

Given mathematical expression:
[tex]\[ \frac{3 \cdot 5 \cdot 0 + 2 \cdot 810}{3 + 2 + 5} + \frac{5 \cdot 5 \cdot a}{2} \][/tex]

Step 1: Simplify the terms within the numerator of the first fraction.
- The term [tex]\(3 \cdot 5 \cdot 0 = 0\)[/tex].
- The term [tex]\(2 \cdot 810 = 1620\)[/tex].

So, the numerator of the first fraction is:
[tex]\[ 0 + 1620 = 1620 \][/tex]

Step 2: Simplify the denominator of the first fraction.
[tex]\[ 3 + 2 + 5 = 10 \][/tex]

Step 3: Combine the simplified numerator and denominator of the first fraction.
[tex]\[ \frac{1620}{10} = 162 \][/tex]

Step 4: Simplify the second term.
- Note that the second term [tex]\(\frac{5 \cdot 5 \cdot a}{2}\)[/tex] is dependent on the variable [tex]\(a\)[/tex].

So, we have:
[tex]\[ 162 + \frac{5 \cdot 5 \cdot a}{2} \][/tex]

Step 5: Therefore, the simplified form of the given expression, focusing only on the part we can solve without additional information for [tex]\(a\)[/tex], is:
[tex]\[ 162 \][/tex]

So, the specific calculated part of the given expression results in:
[tex]\[ 162 \][/tex]