Answer :
To find the circumference of a circle with a given radius, you can use the formula for the circumference of a circle:
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference.
- [tex]\( \pi \)[/tex] (pi) is a mathematical constant approximately equal to 3.14 in this case.
- [tex]\( r \)[/tex] is the radius of the circle.
Given:
- The radius [tex]\( r \)[/tex] is 8.4 inches.
- [tex]\( \pi \)[/tex] is approximated as 3.14.
Substitute the given values into the formula:
[tex]\[ C = 2 \pi r \][/tex]
[tex]\[ C = 2 \times 3.14 \times 8.4 \][/tex]
Perform the multiplication:
[tex]\[ C = 2 \times 3.14 \times 8.4 \][/tex]
[tex]\[ C = 52.752 \][/tex]
Thus, the circumference of the circle is [tex]\( 52.752 \)[/tex] inches.
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference.
- [tex]\( \pi \)[/tex] (pi) is a mathematical constant approximately equal to 3.14 in this case.
- [tex]\( r \)[/tex] is the radius of the circle.
Given:
- The radius [tex]\( r \)[/tex] is 8.4 inches.
- [tex]\( \pi \)[/tex] is approximated as 3.14.
Substitute the given values into the formula:
[tex]\[ C = 2 \pi r \][/tex]
[tex]\[ C = 2 \times 3.14 \times 8.4 \][/tex]
Perform the multiplication:
[tex]\[ C = 2 \times 3.14 \times 8.4 \][/tex]
[tex]\[ C = 52.752 \][/tex]
Thus, the circumference of the circle is [tex]\( 52.752 \)[/tex] inches.