What is the mass of [tex]10.0 \text{ mol } CH_2O_2[/tex]?

Let's begin by setting up our expression. Which number choice goes in the green box?

1. [tex]1 \text{ mole } CH_2O_2[/tex]

2. [tex]6.02 \times 10^{23} \text{ molecules } CH_2O_2[/tex]

3. [tex]46.03 \text{ g } CH_2O_2[/tex]



Answer :

To find the mass of [tex]\( 10.0 \)[/tex] moles of [tex]\( \text{CH}_2\text{O}_2 \)[/tex], we need to know the molar mass of the compound. The molar mass is found by adding the atomic masses of all atoms in the molecule. The molar mass of [tex]\( \text{CH}_2\text{O}_2 \)[/tex] is [tex]\( 46.03 \, \text{g/mol} \)[/tex].

We can use the molar mass to convert moles into grams. The expression we use is:
[tex]\[ \text{mass} = \text{moles} \times \text{molar mass} \][/tex]

In this case, the molar mass of [tex]\( 1 \, \text{mol CH}_2\text{O}_2 \)[/tex] is [tex]\( 46.03 \, \text{g} \)[/tex].

So, [tex]\(\text{mass} = 10.0 \, \text{mol} \times 46.03 \, \text{g/mol} = 460.3 \, \text{g} \)[/tex].

The number that goes in the green box is:
[tex]\[ 3. \, 46.03 \, \text{g CH}_2\text{O}_2 \][/tex]

Thus, the mass of [tex]\( 10.0 \)[/tex] moles of [tex]\( \text{CH}_2\text{O}_2 \)[/tex] is [tex]\( 460.3 \, \text{g} \)[/tex].