A solution has a [tex]\(\left[ H _3 O ^{+}\right] = 4.9 \times 10^{-9} \, M\)[/tex]. Calculate the following:

[tex]\[
\begin{array}{l}
\left[ OH ^{-}\right] = \square \, M \\
pOH = \square
\end{array}
\][/tex]

[tex]\[
pH = \square
\][/tex]



Answer :

To solve this problem, we need to determine the concentration of hydroxide ions [tex]\(\left[ \text{OH} ^{-}\right]\)[/tex], the pOH, and the pH of the solution given [tex]\(\left[ \text{H}_3\text{O} ^{+}\right]=4.9 \times 10^{-9} M\)[/tex]. Here are the steps to find these values:

1. Calculate the concentration of hydroxide ions [tex]\(\left[ \text{OH} ^{-}\right]\)[/tex]:

We use the ion-product constant for water ([tex]\(K_w\)[/tex]) at 25°C, which is [tex]\(1.0 \times 10^{-14}\)[/tex].

[tex]\[ \left[ \text{OH} ^{-} \right] = \frac{K_w}{\left[ \text{H}_3\text{O} ^{+} \right]} \][/tex]

Given:
[tex]\[ K_w = 1.0 \times 10^{-14} \][/tex]
[tex]\[ \left[ \text{H}_3\text{O} ^{+} \right] = 4.9 \times 10^{-9} M \][/tex]

Substituting the values:
[tex]\[ \left[ \text{OH} ^{-} \right] = \frac{1.0 \times 10^{-14}}{4.9 \times 10^{-9}} \][/tex]
[tex]\[ \left[ \text{OH} ^{-} \right] \approx 2.04 \times 10^{-6} M \][/tex]

2. Calculate the pOH of the solution:

The pOH is calculated using the formula:
[tex]\[ \text{pOH} = -\log_{10} \left( \left[ \text{OH} ^{-} \right] \right) \][/tex]

Substituting the concentration of [tex]\(\left[ \text{OH} ^{-} \right]\)[/tex]:
[tex]\[ \text{pOH} = -\log_{10} \left( 2.04 \times 10^{-6} \right) \][/tex]
[tex]\[ \text{pOH} \approx 5.69 \][/tex]

3. Calculate the pH of the solution:

The pH is calculated using the formula:
[tex]\[ \text{pH} = -\log_{10} \left( \left[ \text{H}_3\text{O} ^{+} \right] \right) \][/tex]

Substituting the concentration of [tex]\(\left[ \text{H}_3\text{O} ^{+} \right]\)[/tex]:
[tex]\[ \text{pH} = -\log_{10} \left( 4.9 \times 10^{-9} \right) \][/tex]
[tex]\[ \text{pH} \approx 8.31 \][/tex]

So, the calculated values are:
[tex]\[ \begin{array}{l} \left[ \text{OH} ^{-}\right] \approx 2.04 \times 10^{-6} M \\ \text{pOH} \approx 5.69 \\ \text{pH} \approx 8.31 \end{array} \][/tex]