Answered

What is the [tex]$r$[/tex]-value of the following data, to three decimal places?

\begin{tabular}{|c|c|}
\hline[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 4 & 26 \\
\hline 5 & 11 \\
\hline 8 & 13 \\
\hline 9 & 2 \\
\hline 13 & 1 \\
\hline
\end{tabular}

A. -0.828
B. 0.686
C. 0.828
D. -0.686



Answer :

To find the [tex]$r$[/tex]-value (the correlation coefficient) of the given data, we need to follow these steps:

1. List the paired data points:
[tex]\[ \begin{array}{c|c} x & y \\ \hline 4 & 26 \\ 5 & 11 \\ 8 & 13 \\ 9 & 2 \\ 13 & 1 \\ \end{array} \][/tex]

2. Calculate the means [tex]$\bar{x}$[/tex] and [tex]$\bar{y}$[/tex]:
[tex]\[ \bar{x} = \frac{4 + 5 + 8 + 9 + 13}{5} = \frac{39}{5} = 7.8 \][/tex]
[tex]\[ \bar{y} = \frac{26 + 11 + 13 + 2 + 1}{5} = \frac{53}{5} = 10.6 \][/tex]

3. Calculate the sums of squares and cross-products:

[tex]\[ S_{xx} = \sum (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) \][/tex]

4. Calculate the correlation coefficient [tex]$r$[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}} \][/tex]

After performing all the necessary calculations step-by-step, we find that the [tex]$r$[/tex]-value of the given data, rounded to three decimal places, is:

[tex]\[ r \approx -0.828 \][/tex]

Thus, the correct answer is:

A. -0.828