Answer :
To solve the given system of equations:
[tex]\[ \begin{array}{l} x - y = 6 \\ y = x^2 - 6 \end{array} \][/tex]
we start by expressing one variable in terms of the other using one of the equations. First, we solve the first equation for [tex]\(y\)[/tex]:
[tex]\[ x - y = 6 \implies y = x - 6. \][/tex]
Next, we substitute [tex]\(y = x - 6\)[/tex] into the second equation:
[tex]\[ x - 6 = x^2 - 6. \][/tex]
Now we solve for [tex]\(x\)[/tex] by simplifying and rearranging the equation:
[tex]\[ x - 6 = x^2 - 6 \implies x - 6 + 6 = x^2 - 6 + 6 \implies x = x^2. \][/tex]
Rearrange it into a standard form quadratic equation:
[tex]\[ x^2 - x = 0. \][/tex]
We can factor out an [tex]\(x\)[/tex]:
[tex]\[ x(x - 1) = 0. \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad x = 1. \][/tex]
Now, substitute these values back into [tex]\(y = x - 6\)[/tex] to find the corresponding [tex]\(y\)[/tex]-values.
1. For [tex]\(x = 0\)[/tex]:
[tex]\[ y = 0 - 6 = -6. \][/tex]
This gives the point [tex]\((0, -6)\)[/tex].
2. For [tex]\(x = 1\)[/tex]:
[tex]\[ y = 1 - 6 = -5. \][/tex]
This gives the point [tex]\((1, -5)\)[/tex].
Thus, the solutions to the system of equations are [tex]\((0, -6)\)[/tex] and [tex]\((1, -5)\)[/tex].
From the given multiple-choice options, the correct answer is:
[tex]\[ \boxed{(0, -6) \text{ and } (1, -5)} \][/tex]
[tex]\[ \begin{array}{l} x - y = 6 \\ y = x^2 - 6 \end{array} \][/tex]
we start by expressing one variable in terms of the other using one of the equations. First, we solve the first equation for [tex]\(y\)[/tex]:
[tex]\[ x - y = 6 \implies y = x - 6. \][/tex]
Next, we substitute [tex]\(y = x - 6\)[/tex] into the second equation:
[tex]\[ x - 6 = x^2 - 6. \][/tex]
Now we solve for [tex]\(x\)[/tex] by simplifying and rearranging the equation:
[tex]\[ x - 6 = x^2 - 6 \implies x - 6 + 6 = x^2 - 6 + 6 \implies x = x^2. \][/tex]
Rearrange it into a standard form quadratic equation:
[tex]\[ x^2 - x = 0. \][/tex]
We can factor out an [tex]\(x\)[/tex]:
[tex]\[ x(x - 1) = 0. \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad x = 1. \][/tex]
Now, substitute these values back into [tex]\(y = x - 6\)[/tex] to find the corresponding [tex]\(y\)[/tex]-values.
1. For [tex]\(x = 0\)[/tex]:
[tex]\[ y = 0 - 6 = -6. \][/tex]
This gives the point [tex]\((0, -6)\)[/tex].
2. For [tex]\(x = 1\)[/tex]:
[tex]\[ y = 1 - 6 = -5. \][/tex]
This gives the point [tex]\((1, -5)\)[/tex].
Thus, the solutions to the system of equations are [tex]\((0, -6)\)[/tex] and [tex]\((1, -5)\)[/tex].
From the given multiple-choice options, the correct answer is:
[tex]\[ \boxed{(0, -6) \text{ and } (1, -5)} \][/tex]