A pan containing 40.0 grams of water was allowed to cool from a temperature of [tex]$91.0^{\circ} C$[/tex]. The amount of heat released is 1,300 joules. What is the final temperature?

A. [tex]74^{\circ} C[/tex]
B. [tex]78^{\circ} C[/tex]
C. [tex]81^{\circ} C[/tex]
D. [tex]83^{\circ} C[/tex]



Answer :

To find the final temperature of the water, we can follow these steps:

1. Identify the given data:
- Initial mass of water, [tex]\( m = 40.0 \)[/tex] grams.
- Initial temperature, [tex]\( T_{\text{initial}} = 91.0^\circ \text{C} \)[/tex].
- Heat released, [tex]\( Q = 1300 \)[/tex] joules.
- Specific heat capacity of water, [tex]\( c = 4.18 \)[/tex] J/g°C.

2. Write the formula for heat transfer:
The formula to calculate heat transfer is:
[tex]\[ Q = m \cdot c \cdot \Delta T \][/tex]
where [tex]\( \Delta T \)[/tex] is the change in temperature.

3. Rearrange the formula to find the temperature change:
[tex]\[ \Delta T = \frac{Q}{m \cdot c} \][/tex]

4. Substitute the given values into the formula:
[tex]\[ \Delta T = \frac{1300 \text{ joules}}{40.0 \text{ grams} \cdot 4.18 \text{ J/g°C}} \][/tex]

5. Calculate the temperature change:
[tex]\[ \Delta T \approx 7.7751^\circ \text{C} \][/tex]

6. Determine the final temperature:
The initial temperature was [tex]\( 91.0^\circ \text{C} \)[/tex]. Since the water is cooling, the final temperature will be less than the initial temperature. Thus:
[tex]\[ T_{\text{final}} = T_{\text{initial}} - \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 91.0^\circ \text{C} - 7.7751^\circ \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 83.2249^\circ \text{C} \][/tex]

From the given answer choices, the final temperature closest to this value is:
[tex]\[ \boxed{83^\circ \text{C}} \][/tex]