Thahir
Answered

8. [tex]\(5.0 \times 10^{-3}\)[/tex] moles of an ideal gas are held in a container of volume [tex]\(0.0124 \, \text{dm}^3\)[/tex] and surrounded by a thermostat at 298 K. The gas is allowed to double in volume against a constant external pressure of 1.0 atm.

The entropy change of the system is defined as [tex]\(\Delta S^{\text{syst}} = \frac{q_{\text{rev}}}{T}\)[/tex], where [tex]\(q_{\text{rev}}\)[/tex] is the heat absorbed by the system under reversible conditions.

1. What is the entropy change of the gas in the above irreversible expansion?

2. If the surroundings are large enough, heat exchanged with them is essentially a reversible process so that [tex]\(\Delta S^{\text{sur}} = \frac{q^{\text{surf}}}{T} = -\frac{q^{\text{syst}}}{T}\)[/tex], where [tex]\(q^{\text{surf}}\)[/tex] is the heat absorbed by the surroundings and [tex]\(q^{\text{syst}}\)[/tex] is the heat absorbed by the system. Why the [tex]\((-)\)[/tex] sign?

3. Calculate [tex]\(\Delta S^{\text{surr}}\)[/tex] for the above irreversible and reversible expansions, and hence find [tex]\(\Delta S^{\text{univ}} = \Delta S^{\text{sur}} + \Delta S^{\text{syst}}\)[/tex]. Are your results in accord with the Second Law?



Answer :

Sure, let's go through the question step-by-step.

1. Given Data:
- Moles of gas ([tex]\( n \)[/tex]): [tex]\( 5.0 \times 10^{-3} \)[/tex] moles
- Initial volume ([tex]\( V_i \)[/tex]): [tex]\( 0.0124 \)[/tex] dm[tex]\(^3\)[/tex], which is [tex]\( 0.0124 \times 10^{-3} \)[/tex] m[tex]\(^3\)[/tex]
- Final volume ([tex]\( V_f \)[/tex]): [tex]\( 2 \times V_i \)[/tex]
- Temperature ([tex]\( T \)[/tex]): 298 K
- Universal gas constant ([tex]\( R \)[/tex]): 8.314 J/(mol K)
- External pressure ([tex]\( P_\text{ext} \)[/tex]): 1.0 atm, which is 101325 Pa or 101325 N/m[tex]\(^2\)[/tex]

2. Final Volume:
[tex]\[ V_f = 2 \times V_i = 2 \times 0.0124 \text{ dm}^3 = 0.0248 \text{ dm}^3 = 0.0248 \times 10^{-3} \text{ m}^3 \][/tex]

3. Reversible Work:
For an isothermal reversible expansion:
[tex]\[ W_\text{rev} = -nRT \ln \left( \frac{V_f}{V_i} \right) \][/tex]
Substituting the given values:
[tex]\[ W_\text{rev} = - (5.0 \times 10^{-3} \, \text{mol}) \times (8.314 \, \text{J/(mol K)}) \times (298 \, \text{K}) \times \ln \left( \frac{0.0248}{0.0124} \right) \][/tex]
[tex]\[ \ln \left( \frac{0.0248}{0.0124} \right) = \ln (2) \approx 0.693 \][/tex]
[tex]\[ W_\text{rev} \approx - (5.0 \times 10^{-3}) \times 8.314 \times 298 \times 0.693 \approx -8.5866 \, \text{J} \][/tex]

4. Heat Absorbed by System ([tex]\( q_\text{rev} \)[/tex]):
Under reversible conditions, for isothermal processes:
[tex]\[ q_\text{rev} = - W_\text{rev} = 8.5866 \, \text{J} \][/tex]

5. Entropy Change of the System ([tex]\( \Delta S_\text{syst} \)[/tex]):
[tex]\[ \Delta S_\text{syst} = \frac{q_\text{rev}}{T} = \frac{8.5866 \, \text{J}}{298 \, \text{K}} \approx 0.0288 \, \text{J/K} \][/tex]

6. Entropy Change of the Surroundings ([tex]\( \Delta S_\text{sur} \)[/tex]):
Given that [tex]\( \Delta S_\text{sur} = - \frac{q_\text{sys}}{T} \)[/tex],
[tex]\[ \Delta S_\text{sur} = - \frac{8.5866 \, \text{J}}{298 \, \text{K}} \approx -0.0288 \, \text{J/K} \][/tex]

The negative sign indicates the heat lost by the surroundings, as it is heat gained by the system.

7. Total Entropy Change ([tex]\( \Delta S_\text{total} \)[/tex]):
[tex]\[ \Delta S_\text{total} = \Delta S_\text{syst} + \Delta S_\text{sur} = 0.0288 \, \text{J/K} + (-0.0288 \, \text{J/K}) = 0 \, \text{J/K} \][/tex]

Conclusion:
The total entropy change ([tex]\( \Delta S_\text{total} \)[/tex]) is zero, consistent with the Second Law of Thermodynamics, which states that the entropy of an isolated system either increases or remains constant, but never decreases. In this case, the system and surroundings together are not isolated but are exchanging heat in a reversible manner, resulting in no net change in entropy.