Answer :

To multiply the complex numbers [tex]\((4+i)\)[/tex] and [tex]\((4-i)\)[/tex], we can use the distributive property (also known as the FOIL method in this case, because we’re dealing with binomials).

Let’s write the numbers in standard form:
[tex]\[ (4+i)(4-i) \][/tex]

Now apply the distributive property (FOIL method):
[tex]\[ (4+i)(4-i) = 4 \cdot 4 + 4 \cdot (-i) + i \cdot 4 + i \cdot (-i) \][/tex]

Calculate each term separately:
1. [tex]\(4 \cdot 4 = 16\)[/tex]
2. [tex]\(4 \cdot (-i) = -4i\)[/tex]
3. [tex]\(i \cdot 4 = 4i\)[/tex]
4. [tex]\(i \cdot (-i) = -i^2\)[/tex]

Now, combine these results:
[tex]\[ (4+i)(4-i) = 16 - 4i + 4i - i^2 \][/tex]

Notice that [tex]\(-4i\)[/tex] and [tex]\(4i\)[/tex] cancel each other out:
[tex]\[ 16 - i^2 \][/tex]

Recall that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ -i^2 = -(-1) = 1 \][/tex]

So the expression simplifies to:
[tex]\[ 16 + 1 = 17 \][/tex]

Thus, the product of the complex numbers [tex]\((4+i)\)[/tex] and [tex]\((4-i)\)[/tex] is:
[tex]\[ 17 \][/tex]

Therefore, the correct answer is:
[tex]\[ (D) 17 \][/tex]