Write using only positive exponents.

[tex]\[ \frac{16 x^4 y^{-3} z^4}{36 x^{-2} y z^0} \][/tex]

A. [tex]\(\frac{4 x^2 z^4}{9 y^2}\)[/tex]

B. [tex]\(\frac{4 x^6 z^4}{9 y^4}\)[/tex]

C. [tex]\(\frac{9 x^6 z^4}{4 y^4}\)[/tex]



Answer :

Let's simplify the given expression step by step to write it only using positive exponents.

Given expression:

[tex]\[ \frac{16 x^4 y^{-3} z^4}{36 x^{-2} y z^0} \][/tex]

### Step 1: Simplify the constants
First, we simplify the numerical coefficients (i.e., the numbers without variables):

[tex]\[ \frac{16}{36} = \frac{4}{9} \][/tex]

So, our expression becomes:

[tex]\[ \frac{4 x^4 y^{-3} z^4}{9 x^{-2} y z^0} \][/tex]

### Step 2: Simplify the exponents using properties of exponents
Let's deal with each variable separately.

For variable [tex]\( x \)[/tex]:

We have [tex]\( x^4 \)[/tex] in the numerator and [tex]\( x^{-2} \)[/tex] in the denominator. Recall the property:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

Applying this property:

[tex]\[ \frac{x^4}{x^{-2}} = x^{4 - (-2)} = x^{4 + 2} = x^6 \][/tex]

For variable [tex]\( y \)[/tex]:

We have [tex]\( y^{-3} \)[/tex] in the numerator and [tex]\( y \)[/tex] (which is [tex]\( y^1 \)[/tex]) in the denominator:

[tex]\[ \frac{y^{-3}}{y} = y^{-3 - 1} = y^{-3 - 1} = y^{-4} \][/tex]

For variable [tex]\( z \)[/tex]:

We have [tex]\( z^4 \)[/tex] in the numerator and [tex]\( z^0 \)[/tex] (which is [tex]\( 1 \)[/tex]) in the denominator:

[tex]\[ \frac{z^4}{z^0} = z^4 \][/tex]

### Step 3: Combine all simplified terms
Putting it all together, we get:

[tex]\[ \frac{4 x^6 y^{-4} z^4}{9} \][/tex]

### Step 4: Write only using positive exponents
To write the expression using only positive exponents, we move [tex]\( y^{-4} \)[/tex] from the numerator to the denominator:

[tex]\[ \frac{4 x^6 z^4}{9 y^4} \][/tex]

### Final Answer
Thus, the simplified expression using only positive exponents is:

[tex]\[ \frac{4 x^6 z^4}{9 y^4} \][/tex]