Find the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-intercepts of the graph of [tex]\( -3x + 2y = 20 \)[/tex].

State each answer as an integer or an improper fraction in simplest form.

Answer Attempt 1 out of 2:

[tex]\( x \)[/tex]-intercept: [tex]\( \square \)[/tex]

[tex]\( y \)[/tex]-intercept: [tex]\( \square \)[/tex]



Answer :

To find the intercepts of the graph of the equation [tex]\( -3x + 2y = 20 \)[/tex]:

### Finding the [tex]\( x \)[/tex]-Intercept:
The [tex]\( x \)[/tex]-intercept is the point where the graph crosses the [tex]\( x \)[/tex]-axis. At this point, [tex]\( y = 0 \)[/tex].

1. Set [tex]\( y = 0 \)[/tex] in the equation:
[tex]\[ -3x + 2(0) = 20 \][/tex]
Simplifying this, we have:
[tex]\[ -3x = 20 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{20}{-3} = -\frac{20}{3} \][/tex]

Thus, the [tex]\( x \)[/tex]-intercept is [tex]\( -\frac{20}{3} \)[/tex].

### Finding the [tex]\( y \)[/tex]-Intercept:
The [tex]\( y \)[/tex]-intercept is the point where the graph crosses the [tex]\( y \)[/tex]-axis. At this point, [tex]\( x = 0 \)[/tex].

1. Set [tex]\( x = 0 \)[/tex] in the equation:
[tex]\[ -3(0) + 2y = 20 \][/tex]
Simplifying this, we have:
[tex]\[ 2y = 20 \][/tex]

2. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{20}{2} = 10 \][/tex]

Thus, the [tex]\( y \)[/tex]-intercept is [tex]\( 10 \)[/tex].

### Final Answers:
- The [tex]\( x \)[/tex]-intercept is [tex]\( \boxed{-\frac{20}{3}} \)[/tex].
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{10} \)[/tex].