3. If [tex]\frac{3}{s}=7[/tex] and [tex]\frac{4}{t}=12[/tex], then what is the value of [tex]s-t[/tex]?

A. [tex]-\frac{1}{7}[/tex]
B. [tex]\frac{2}{7}[/tex]
C. [tex]\frac{2}{12}[/tex]
D. [tex]\frac{2}{21}[/tex]



Answer :

To solve for [tex]\( s \)[/tex] and [tex]\( t \)[/tex] given the equations [tex]\(\frac{3}{s} = 7\)[/tex] and [tex]\(\frac{4}{t} = 12\)[/tex], follow these steps:

1. Solve for [tex]\( s \)[/tex] in the equation [tex]\(\frac{3}{s} = 7\)[/tex]:

[tex]\[ \frac{3}{s} = 7 \][/tex]

To isolate [tex]\( s \)[/tex], multiply both sides by [tex]\( s \)[/tex]:

[tex]\[ 3 = 7s \][/tex]

Now, divide both sides by 7:

[tex]\[ s = \frac{3}{7} \][/tex]

2. Solve for [tex]\( t \)[/tex] in the equation [tex]\(\frac{4}{t} = 12\)[/tex]:

[tex]\[ \frac{4}{t} = 12 \][/tex]

To isolate [tex]\( t \)[/tex], multiply both sides by [tex]\( t \)[/tex]:

[tex]\[ 4 = 12t \][/tex]

Now, divide both sides by 12:

[tex]\[ t = \frac{4}{12} = \frac{1}{3} \][/tex]

3. Calculate [tex]\( s - t \)[/tex]:

[tex]\[ s = \frac{3}{7}, \quad t = \frac{1}{3} \][/tex]

To subtract these fractions, find a common denominator. The least common multiple of 7 and 3 is 21. Convert the fractions:

[tex]\[ s = \frac{3}{7} = \frac{3 \times 3}{7 \times 3} = \frac{9}{21} \][/tex]

[tex]\[ t = \frac{1}{3} = \frac{1 \times 7}{3 \times 7} = \frac{7}{21} \][/tex]

Subtract the two fractions:

[tex]\[ s - t = \frac{9}{21} - \frac{7}{21} = \frac{2}{21} \][/tex]

Thus, the value of [tex]\( s - t \)[/tex] is:

[tex]\[ \boxed{\frac{2}{21}} \][/tex]