Answer :

Sure, let's establish the trigonometric identity:

[tex]\[ (1 + \tan^2 \theta) \cos^2 \theta = 1 \][/tex]

1. Start with the left-hand side (LHS) of the equation:
[tex]\[ \text{LHS} = (1 + \tan^2 \theta) \cos^2 \theta \][/tex]

2. Recall the Pythagorean identity involving tangent and secant:
[tex]\[ 1 + \tan^2 \theta = \sec^2 \theta \][/tex]

3. Substitute [tex]\(\sec^2 \theta\)[/tex] in place of [tex]\(1 + \tan^2 \theta\)[/tex]:
[tex]\[ \text{LHS} = \sec^2 \theta \cdot \cos^2 \theta \][/tex]

4. Recall the definition of secant. Since [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex], we have:
[tex]\[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \][/tex]

5. Substitute [tex]\(\frac{1}{\cos^2 \theta}\)[/tex] for [tex]\(\sec^2 \theta\)[/tex]:
[tex]\[ \text{LHS} = \frac{1}{\cos^2 \theta} \cdot \cos^2 \theta \][/tex]

6. Simplify the expression:
[tex]\[ \frac{1}{\cos^2 \theta} \cdot \cos^2 \theta = 1 \][/tex]

Thus, we have shown that:

[tex]\[ (1 + \tan^2 \theta) \cos^2 \theta = 1 \][/tex]

Therefore, the given identity is established.