Given the function defined in the table below, find the average rate of change, in simplest form, of the function over the interval [tex][tex]$4 \leq x \leq 20$[/tex][/tex].

\begin{tabular}{|c|c|}
\hline[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline 4 & 4 \\
\hline 12 & 6 \\
\hline 20 & 8 \\
\hline 28 & 10 \\
\hline
\end{tabular}



Answer :

To find the average rate of change of the function [tex]\( f(x) \)[/tex] over the interval [tex]\( 4 \leq x \leq 20 \)[/tex], we can use the following formula:

[tex]\[ \text{Average Rate of Change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \][/tex]

where [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] are the endpoints of the interval and [tex]\( f(x_1) \)[/tex] and [tex]\( f(x_2) \)[/tex] are the corresponding function values.

1. Identify the points:
- We are given the interval [tex]\( 4 \leq x \leq 20 \)[/tex].
- Let [tex]\( x_1 = 4 \)[/tex] and [tex]\( x_2 = 20 \)[/tex].

2. Find the function values at these points:
- At [tex]\( x = 4 \)[/tex], [tex]\( f(x_1) = 4 \)[/tex].
- At [tex]\( x = 20 \)[/tex], [tex]\( f(x_2) = 8 \)[/tex].

3. Substitute these values into the formula:

[tex]\[ \text{Average Rate of Change} = \frac{f(20) - f(4)}{20 - 4} = \frac{8 - 4}{20 - 4} = \frac{4}{16} = \frac{1}{4} \][/tex]

Therefore, the average rate of change of the function [tex]\( f(x) \)[/tex] over the interval [tex]\( 4 \leq x \leq 20 \)[/tex] is [tex]\( \boxed{0.25} \)[/tex] or [tex]\( \frac{1}{4} \)[/tex] in simplest form.

Other Questions