Select the correct answer.

What is the solution for [tex]$x$[/tex] in the equation?
[tex]16x - 4 + 5x = -67[/tex]

A. [tex]x = -\frac{1}{3}[/tex]

B. [tex]x = -3[/tex]

C. [tex]x = \frac{1}{3}[/tex]

D. [tex]x = 3[/tex]



Answer :

Sure, let's solve the equation step by step.

Given the equation:
[tex]\[ 16x - 4 + 5x = -67 \][/tex]

1. Combine Like Terms on the Left-Hand Side:
Combine the terms that contain [tex]\( x \)[/tex]:

[tex]\[ 16x + 5x - 4 = -67 \][/tex]

This simplifies to:

[tex]\[ 21x - 4 = -67 \][/tex]

2. Isolate the Term with [tex]\( x \)[/tex]:
To isolate the term with [tex]\( x \)[/tex], add 4 to both sides of the equation:

[tex]\[ 21x - 4 + 4 = -67 + 4 \][/tex]

This simplifies to:

[tex]\[ 21x = -63 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
Divide both sides of the equation by 21 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{-63}{21} \][/tex]

Simplifying the right-hand side:

[tex]\[ x = -3 \][/tex]

Therefore, the solution for [tex]\( x \)[/tex] is:
[tex]\[ \boxed{-3} \][/tex]

So, the correct answer is:
[tex]\[ \text{B. } x = -3 \][/tex]