The expression [tex]\left(3x^2 + 2xy + 7\right) - \left(6x^2 - 4xy + 3\right)[/tex] is equivalent to

1) [tex]-3x^2 - 2xy + 4[/tex]

2) [tex]3x^2 - 2xy + 4[/tex]

3) [tex]-3x^2 + 6xy + 4[/tex]

4) [tex]3x^2 - 6xy - 4[/tex]



Answer :

To solve the expression [tex]\(\left(3x^2 + 2xy + 7\right) - \left(6x^2 - 4xy + 3\right)\)[/tex], follow these steps:

1. Distribute the Negative Sign:
Distribute the negative sign through the second expression:
[tex]\[ 3x^2 + 2xy + 7 - (6x^2 - 4xy + 3) = 3x^2 + 2xy + 7 - 6x^2 + 4xy - 3 \][/tex]

2. Combine Like Terms:
Combine the like terms, i.e., those involving [tex]\(x^2\)[/tex], [tex]\(xy\)[/tex], and constants.
- For the [tex]\(x^2\)[/tex] terms: [tex]\(3x^2 - 6x^2 = -3x^2\)[/tex]
- For the [tex]\(xy\)[/tex] terms: [tex]\(2xy + 4xy = 6xy\)[/tex]
- For the constant terms: [tex]\(7 - 3 = 4\)[/tex]

3. Write the Simplified Expression:
Combine the results to get the simplified expression:
[tex]\[ -3x^2 + 6xy + 4 \][/tex]

Thus, the expression [tex]\(\left(3x^2 + 2xy + 7\right) - \left(6x^2 - 4xy + 3\right)\)[/tex] simplifies to:
[tex]\(\boxed{-3x^2 + 6xy + 4}\)[/tex]

Looking at the given options, the correct choice is:
3) [tex]\(-3x^2 + 6xy + 4\)[/tex]