Select the correct answer.

Given the following formula, solve for [tex]t[/tex].

[tex]
v = u + a t
[/tex]

A. [tex]t = a(v - u)[/tex]

B. [tex]t = \frac{v - u}{a}[/tex]

C. [tex]t = a(v + u)[/tex]

D. [tex]t = \frac{v + u}{a}[/tex]



Answer :

To solve for [tex]\( t \)[/tex] in the equation:

[tex]\[ v = u + a t, \][/tex]

we follow these algebraic steps:

1. Isolate the term involving [tex]\( t \)[/tex]:

Start with the original equation:
[tex]\[ v = u + a t. \][/tex]

2. Subtract [tex]\( u \)[/tex] from both sides of the equation to isolate [tex]\( a t \)[/tex]:

[tex]\[ v - u = a t. \][/tex]

3. Solve for [tex]\( t \)[/tex] by dividing both sides of the equation by [tex]\( a \)[/tex]:

[tex]\[ t = \frac{v - u}{a}. \][/tex]

Therefore, the correct answer is:

B. [tex]\( t = \frac{v - u}{a} \)[/tex]

Thus, when solving for [tex]\( t \)[/tex] in the formula [tex]\( v = u + a t \)[/tex], we find that the correct expression is [tex]\( \frac{v - u}{a} \)[/tex].