Rewrite in polar form: [tex]x^2+y^2-2y=7[/tex]

A. [tex]r^2 = 2 \sin \theta + 7[/tex]
B. [tex]r^2 = 2 \sin \theta - 7[/tex]
C. [tex]r^2 = 2r \sin \theta - 7[/tex]
D. [tex]r^2 = 2r \sin \theta + 7[/tex]



Answer :

To rewrite the given equation [tex]\( x^2 + y^2 - 2y = 7 \)[/tex] in polar form, we need to follow a structured approach. Let's go through it step-by-step:

1. Recall the polar coordinate definitions:
- [tex]\( x = r \cos \theta \)[/tex]
- [tex]\( y = r \sin \theta \)[/tex]

2. Substitute the polar coordinates into the given Cartesian equation:
- Given: [tex]\( x^2 + y^2 - 2y = 7 \)[/tex]
- Substitute [tex]\( x = r \cos \theta \)[/tex] and [tex]\( y = r \sin \theta \)[/tex]:
[tex]\[ (r \cos \theta)^2 + (r \sin \theta)^2 - 2(r \sin \theta) = 7 \][/tex]

3. Simplify the equation:
- Use the Pythagorean identity [tex]\( \cos^2 \theta + \sin^2 \theta = 1 \)[/tex]:
[tex]\[ r^2 \cos^2 \theta + r^2 \sin^2 \theta - 2r \sin \theta = 7 \][/tex]
- Combine the like terms (since [tex]\( \cos^2 \theta + \sin^2 \theta = 1 \)[/tex]):
[tex]\[ r^2 (\cos^2 \theta + \sin^2 \theta) - 2r \sin \theta = 7 \][/tex]
- Simplify using the identity:
[tex]\[ r^2 (1) - 2r \sin \theta = 7 \][/tex]
[tex]\[ r^2 - 2r \sin \theta = 7 \][/tex]

4. Rearrange the equation to express [tex]\( r^2 \)[/tex] clearly:
[tex]\[ r^2 = 2r \sin \theta + 7 \][/tex]

Hence, the polar form of the given Cartesian equation [tex]\( x^2 + y^2 - 2y = 7 \)[/tex] is:

[tex]\[ r^2 = 2r \sin \theta + 7 \][/tex]

Among the provided options, the correct one is:
- [tex]\( r^2 = 2r \sin \theta + 7 \)[/tex]

So, the index of the correct option is:
4