Answered

The arithmetic mean of the following data is 7. Find [tex]\( x \)[/tex].

[tex]\(3, 5, 8, x, 6, 4, 7, 9\)[/tex]

a. 7
b. 8
c. 14
d. 9



Answer :

To find the unknown value [tex]\( x \)[/tex] in the dataset [tex]\(\{3, 5, 8, x, 6, 4, 7, 9\}\)[/tex] given that the arithmetic mean of the data is 7, follow the steps below:

1. Sum up the known values in the dataset:

Add the numbers [tex]\(3, 5, 8, 6, 4, 7,\)[/tex] and [tex]\(9\)[/tex]:
[tex]\[ 3 + 5 + 8 + 6 + 4 + 7 + 9 = 42 \][/tex]

2. Determine the total number of data points in the dataset:

The dataset includes [tex]\(8\)[/tex] numbers: [tex]\(\{3, 5, 8, x, 6, 4, 7, 9\}\)[/tex].

3. Use the formula for the arithmetic mean:

The arithmetic mean is given by:
[tex]\[ \text{Mean} = \frac{\text{Sum of all data points}}{\text{Total number of data points}} \][/tex]

Here, the mean is [tex]\(7\)[/tex] and the total number of data points is [tex]\(8\)[/tex]. Therefore:
[tex]\[ \text{Sum of all data points} = 7 \times 8 = 56 \][/tex]

4. Set up the equation to find the unknown value [tex]\( x \)[/tex]:

Let [tex]\( S \)[/tex] represent the sum of all the given data points, including [tex]\( x \)[/tex]. We know:
[tex]\[ S = 42 + x \quad \text{and} \quad S = 56 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Set the equation:
[tex]\[ 42 + x = 56 \][/tex]

Subtract [tex]\(42\)[/tex] from both sides of the equation to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 56 - 42 \][/tex]
[tex]\[ x = 14 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( \boxed{14} \)[/tex].

So, the correct answer is [tex]\( c. 14 \)[/tex].