Find the [tex]\( n^{\text{th}} \)[/tex] term of the arithmetic sequence whose initial term is [tex]\( a_1 \)[/tex] and common difference is [tex]\( d \)[/tex]. What is the seventy-first term?

Given:
[tex]\[ a_1 = 3 \][/tex]
[tex]\[ d = -8 \][/tex]

Enter the formula for the [tex]\( n^{\text{th}} \)[/tex] term of this arithmetic series:
[tex]\[ a_n = \square \][/tex]

(Simplify your answer. Use integers or fractions for any numbers in the expression.)



Answer :

To find the [tex]\( n \)[/tex]-th term of an arithmetic sequence, we use the formula:

[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]

where [tex]\( a_1 \)[/tex] is the first term, [tex]\( d \)[/tex] is the common difference, and [tex]\( n \)[/tex] is the term number we want to find.

Given the values:
[tex]\[ a_1 = 3 \][/tex]
[tex]\[ d = -8 \][/tex]
and we want to find the [tex]\( 71 \)[/tex]-st term ([tex]\( n = 71 \)[/tex]).

First, let's substitute [tex]\( a_1 \)[/tex], [tex]\( d \)[/tex], and [tex]\( n \)[/tex] into the formula:

[tex]\[ a_{71} = 3 + (71 - 1) \cdot (-8) \][/tex]

Simplify the expression step by step:

1. Calculate [tex]\( 71 - 1 \)[/tex]:
[tex]\[ 71 - 1 = 70 \][/tex]

2. Multiply by the common difference [tex]\( d \)[/tex]:
[tex]\[ 70 \cdot (-8) = -560 \][/tex]

3. Add the result to the first term [tex]\( a_1 \)[/tex]:
[tex]\[ 3 + (-560) = 3 - 560 = -557 \][/tex]

Therefore, the seventy-first term [tex]\( a_{71} \)[/tex] of the arithmetic sequence is:

[tex]\[ a_{71} = -557 \][/tex]