Answer :

To evaluate the expression [tex]\(\frac{7.83 \times 7.83 - 1.17 \times 1.17}{6.66}\)[/tex] using identities, follow these steps:

1. Recognize the Identity to Use:

The expression in the numerator, [tex]\(7.83 \times 7.83 - 1.17 \times 1.17\)[/tex], resembles the difference of squares formula. The identity for the difference of squares is:

[tex]\[ a^2 - b^2 = (a + b)(a - b) \][/tex]

2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

Here, let:
[tex]\[ a = 7.83 \quad \text{and} \quad b = 1.17 \][/tex]

3. Apply the Identity:

Using the identity, we can rewrite the numerator:
[tex]\[ 7.83^2 - 1.17^2 = (7.83 + 1.17)(7.83 - 1.17) \][/tex]

4. Calculate [tex]\(a + b\)[/tex] and [tex]\(a - b\)[/tex]:

First, find the sum and the difference of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + b = 7.83 + 1.17 = 9.00 \][/tex]
[tex]\[ a - b = 7.83 - 1.17 = 6.66 \][/tex]

5. Substitute Back into the Expression:

Now substitute these values back into the rewritten form of the numerator:
[tex]\[ (7.83 + 1.17)(7.83 - 1.17) = 9.00 \times 6.66 \][/tex]

6. Simplify the Expression:

The original expression now becomes:
[tex]\[ \frac{(7.83 + 1.17)(7.83 - 1.17)}{6.66} = \frac{9.00 \times 6.66}{6.66} \][/tex]

7. Cancel the Common Factor:

The common factor [tex]\(6.66\)[/tex] in the numerator and the denominator cancels out:
[tex]\[ \frac{9.00 \times 6.66}{6.66} = 9.00 \][/tex]

So, the value of the given expression is [tex]\(9.00\)[/tex].

Thus, we have:
[tex]\[ \boxed{9.00} \][/tex]

The value of the numerator [tex]\(7.83^2 - 1.17^2\)[/tex] is [tex]\(59.94\)[/tex], and the final result after dividing by the denominator [tex]\(6.66\)[/tex] is [tex]\(9.00\)[/tex].