What is the value of [tex]\( x \)[/tex]?

[tex]\[ \frac{4}{5} x - \frac{1}{10} = \frac{3}{10} \][/tex]

A. [tex]\( \frac{1}{4} \)[/tex]
B. [tex]\( \frac{8}{25} \)[/tex]
C. [tex]\( \frac{2}{5} \)[/tex]
D. [tex]\( \frac{1}{2} \)[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] in the given equation:

[tex]\[ \frac{4}{5} x - \frac{1}{10} = \frac{3}{10} \][/tex]

we will proceed step-by-step to isolate [tex]\( x \)[/tex].

1. Eliminate the fraction by finding a common denominator, if necessary:
The denominators in the equation are 5 and 10. The common denominator between 5 and 10 is 10.

2. Rewrite the equation with the common denominator:
- [tex]\(\frac{4}{5} x\)[/tex] can be rewritten as [tex]\(\frac{8}{10} x\)[/tex] because [tex]\(\frac{4}{5} = \frac{4 \times 2}{5 \times 2} = \frac{8}{10}\)[/tex].

So, the equation becomes:
[tex]\[ \frac{8}{10} x - \frac{1}{10} = \frac{3}{10} \][/tex]

3. Isolate the term with [tex]\( x \)[/tex]:
Add [tex]\(\frac{1}{10}\)[/tex] to both sides to get:
[tex]\[ \frac{8}{10} x = \frac{3}{10} + \frac{1}{10} \][/tex]

4. Combine the fractions on the right-hand side:
[tex]\[ \frac{8}{10} x = \frac{4}{10} \][/tex]

5. Divide both sides by [tex]\(\frac{8}{10}\)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\frac{4}{10}}{\frac{8}{10}} = \frac{4}{10} \times \frac{10}{8} = \frac{4}{8} = \frac{1}{2} \][/tex]

Thus, [tex]\( x = \frac{1}{2} \)[/tex].

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( \frac{1}{2} \)[/tex]. Hence, the correct answer is:

[tex]\[ \boxed{\frac{1}{2}} \][/tex]