What is the ratio of surface area to volume for a sphere with the following measurements?

Surface area [tex]= 588 \, \text{m}^2[/tex]
Volume [tex]= 1372 \, \text{m}^3[/tex]

A. [tex]0.04 \, \text{m}^{-1}[/tex]
B. [tex]0.4 \, \text{m}^{-1}[/tex]
C. [tex]0.02 \, \text{m}^{-1}[/tex]
D. [tex]0.2 \, \text{m}^{-1}[/tex]



Answer :

To determine the ratio of the surface area to the volume for the given sphere, we should follow these steps:

1. Identify the given values:
- Surface area [tex]\(A = 588 \, m^2\)[/tex]
- Volume [tex]\(V = 1372 \, m^3\)[/tex]

2. Calculate the ratio of the surface area to the volume:
[tex]\[ \text{Ratio} = \frac{\text{Surface Area}}{\text{Volume}} \][/tex]
Substituting the given values:
[tex]\[ \text{Ratio} = \frac{588 \, m^2}{1372 \, m^3} \][/tex]

3. Simplify the ratio:
Performing the division:
[tex]\[ \text{Ratio} \approx 0.42857142857142855 \, m^{-1} \][/tex]
This numerical result is obtained by dividing 588 by 1372.

4. Compare the calculated ratio with the provided options:
- Option A: [tex]\(0.04 \, m^{-1}\)[/tex]
- Option B: [tex]\(0.4 \, m^{-1}\)[/tex]
- Option C: [tex]\(0.02 \, m^{-1}\)[/tex]
- Option D: [tex]\(0.2 \, m^{-1}\)[/tex]

Among these options, the value closest to the calculated ratio [tex]\(0.42857142857142855 \, m^{-1}\)[/tex] is:
- Option B: [tex]\(0.4 \, m^{-1}\)[/tex]

5. Conclusion:
The ratio of the surface area to the volume for the given sphere is approximately [tex]\(0.4 \, m^{-1}\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{0.4 \, m^{-1}} \][/tex]