Match the following items:

1. [tex]\(2x + x + 4 = -17\)[/tex] [tex]\(\square\)[/tex] combine like terms
2. [tex]\(3x + 4 = -17\)[/tex] [tex]\(\square\)[/tex] subtraction
3. [tex]\(3x = -21\)[/tex] [tex]\(\square\)[/tex] division
4. [tex]\(x = -7\)[/tex]

Given



Answer :

Sure! Let's go through the steps to match the items correctly:

Step 1: Simplify the equation by combining like terms.

1. [tex]\(2x + x + 4 = -17\)[/tex]

Here, we need to combine the terms [tex]\(2x\)[/tex] and [tex]\(x\)[/tex] which both have the variable [tex]\(x\)[/tex].

[tex]\[2x + x = 3x\][/tex]

So, the equation simplifies to:

[tex]\[3x + 4 = -17\][/tex]

Step 2: Isolate the variable [tex]\(x\)[/tex] by performing subtraction.

2. [tex]\(3x + 4 = -17\)[/tex]

To isolate [tex]\(3x\)[/tex], subtract 4 from both sides:

[tex]\[3x + 4 - 4 = -17 - 4\][/tex]

This simplifies to:

[tex]\[3x = -21\][/tex]

Step 3: Solve for [tex]\(x\)[/tex] by performing division.

3. [tex]\(3x = -21\)[/tex]

To solve for [tex]\(x\)[/tex], divide both sides by 3:

[tex]\[\frac{3x}{3} = \frac{-21}{3}\][/tex]

This simplifies to:

[tex]\[x = -7\][/tex]

Step 4: The final solution is [tex]\(x = -7\)[/tex].

4. [tex]\(x = -7\)[/tex]

Matching the items with the appropriate operation, we get:

1. [tex]\(2x + x + 4 = -17\)[/tex] ☐ combine like terms
2. [tex]\(3x + 4 = -17\)[/tex] ☐ subtraction
3. [tex]\(3x = -21\)[/tex] ☐ division
4. [tex]\(x = -7\)[/tex] ☐

So, the correct matching is:

1. [tex]\(2x + x + 4 = -17\)[/tex] ☐ combine like terms
2. [tex]\(3x + 4 = -17\)[/tex] ☐ subtraction
3. [tex]\(3x = -21\)[/tex] ☐ division
4. [tex]\(x = -7\)[/tex] ☐