Solve the following system using substitution.
[tex]\[
\begin{aligned}
x - 6y & = 56 \\
5y - 6x & = -26
\end{aligned}
\][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The solution set is [tex]\(\square\)[/tex] (Type an ordered pair.)

B. There are infinitely many solutions.

C. The solution is the empty set.



Answer :

To solve the given system of equations using substitution, follow these steps:

1. Identify the two equations:
[tex]\[ \begin{aligned} x - 6y &= 56 \quad \text{(Equation 1)} \\ 5y - 6x &= -26 \quad \text{(Equation 2)} \end{aligned} \][/tex]

2. Solve Equation 1 for [tex]\(x\)[/tex]:
[tex]\[ x - 6y = 56 \][/tex]
Add [tex]\(6y\)[/tex] to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = 56 + 6y \][/tex]

3. Substitute [tex]\(x = 56 + 6y\)[/tex] into Equation 2:
[tex]\[ 5y - 6(56 + 6y) = -26 \][/tex]

4. Simplify and solve for [tex]\(y\)[/tex]:
[tex]\[ 5y - 336 - 36y = -26 \][/tex]

Combine like terms:
[tex]\[ -31y - 336 = -26 \][/tex]

Add 336 to both sides:
[tex]\[ -31y = 310 \][/tex]

Divide by -31:
[tex]\[ y = \frac{310}{-31} \][/tex]
[tex]\[ y = -10 \][/tex]

5. Substitute [tex]\(y = -10\)[/tex] back into the expression [tex]\(x = 56 + 6y\)[/tex]:
[tex]\[ x = 56 + 6(-10) \][/tex]
[tex]\[ x = 56 - 60 \][/tex]
[tex]\[ x = -4 \][/tex]

6. Write the solution as an ordered pair:
[tex]\[ (x, y) = (-4, -10) \][/tex]

So, the solution set is [tex]\((-4, -10)\)[/tex].

The correct answer is:
A. The solution set is [tex]\(\boxed{(-4, -10)}\)[/tex].