Perform the indicated operation and simplify the result.

[tex]\[
\frac{4x^2 - y^2}{8x^2 + 10xy + 3y^2} \cdot \frac{4x^2 - 9xy - 9y^2}{2x^2 - 5xy - 3y^2} =
\][/tex]



Answer :

To solve the problem [tex]\(\frac{4 x^2-y^2}{8 x^2 + 10 x y + 3 y^2} \cdot \frac{4 x^2-9 x y-9 y^2}{2 x^2-5 x y-3 y^2}\)[/tex], let's break it down into steps and perform the simplification step-by-step.

1. Identify the numerators and denominators of each fraction:

The first fraction has:
- Numerator: [tex]\(4 x^2 - y^2\)[/tex]
- Denominator: [tex]\(8 x^2 + 10 x y + 3 y^2\)[/tex]

The second fraction has:
- Numerator: [tex]\(4 x^2 - 9 x y - 9 y^2\)[/tex]
- Denominator: [tex]\(2 x^2 - 5 x y - 3 y^2\)[/tex]

2. Multiply the numerators together:

[tex]\[ (4 x^2 - y^2) \cdot (4 x^2 - 9 x y - 9 y^2) \][/tex]

3. Multiply the denominators together:

[tex]\[ (8 x^2 + 10 x y + 3 y^2) \cdot (2 x^2 - 5 x y - 3 y^2) \][/tex]

4. Form the new fraction:

[tex]\[ \frac{(4 x^2 - y^2) \cdot (4 x^2 - 9 x y - 9 y^2)}{(8 x^2 + 10 x y + 3 y^2) \cdot (2 x^2 - 5 x y - 3 y^2)} \][/tex]

5. Simplify the resulting fraction:

After performing the multiplications and simplifying the fraction, we obtain:

[tex]\[ \frac{(4 x^2 - y^2) \cdot (4 x^2 - 9 x y - 9 y^2)}{(8 x^2 + 10 x y + 3 y^2) \cdot (2 x^2 - 5 x y - 3 y^2)} = \frac{2x - y}{2x + y} \][/tex]

Therefore, the final simplified result of the operation is:

[tex]\[ \boxed{\frac{2x - y}{2x + y}} \][/tex]