Instructions: Match the following data with the correct stem and leaf.

\begin{tabular}{|l|l|}
\hline
State & Education Attainment (\%) \\
\hline
Vermont & 33.1 \\
\hline
South Dakota & 25.1 \\
\hline
North Dakota & 25.8 \\
\hline
Nevada & 21.8 \\
\hline
District of Columbia & 48.5 \\
\hline
Oregon & 29.2 \\
\hline
Arkansas & 18.9 \\
\hline
Georgia & 27.5 \\
\hline
Nebraska & 27.4 \\
\hline
Michigan & 24.6 \\
\hline
Rhode Island & 30.5 \\
\hline
\end{tabular}



Answer :

To match the given data of education attainment percentages with the correct stem and leaf format, we'll first understand how to create a stem-and-leaf plot.

### Step-by-Step Solution:

1. Dividing Each Percentage:
- Stem: The tens digit of the percentage.
- Leaf: The units and decimal digits of the percentage.

2. Mapping Each State:
- Vermont: 33.1
- Stem: 3
- Leaf: 3.1
- South Dakota: 25.1
- Stem: 2
- Leaf: 5.1
- North Dakota: 25.8
- Stem: 2
- Leaf: 5.8
- Nevada: 21.8
- Stem: 2
- Leaf: 1.8
- District of Columbia: 48.5
- Stem: 4
- Leaf: 8.5
- Oregon: 29.2
- Stem: 2
- Leaf: 9.2
- Arkansas: 18.9
- Stem: 1
- Leaf: 8.9
- Georgia: 27.5
- Stem: 2
- Leaf: 7.5
- Nebraska: 27.4
- Stem: 2
- Leaf: 7.4
- Michigan: 24.6
- Stem: 2
- Leaf: 4.6
- Rhode Island: 30.5
- Stem: 3
- Leaf: 0.5

3. Constructing the Stem-and-Leaf Plot:
- Stem 1:
- Leaves: 8.9 (Arkansas: 18.9)
- Stem 2:
- Leaves: 1.8 (Nevada: 21.8), 4.6 (Michigan: 24.6), 5.1 (South Dakota: 25.1), 5.8 (North Dakota: 25.8), 7.4 (Nebraska: 27.4), 7.5 (Georgia: 27.5), 9.2 (Oregon: 29.2)
- Stem 3:
- Leaves: 0.5 (Rhode Island: 30.5), 3.1 (Vermont: 33.1)
- Stem 4:
- Leaves: 8.5 (District of Columbia: 48.5)

Thus, the stem-and-leaf plot you get from the data is:

- 1 | 8.9 (Arkansas)
- 2 | 1.8 (Nevada), 4.6 (Michigan), 5.1 (South Dakota), 5.8 (North Dakota), 7.4 (Nebraska), 7.5 (Georgia), 9.2 (Oregon)
- 3 | 0.5 (Rhode Island), 3.1 (Vermont)
- 4 | 8.5 (District of Columbia)

This accurately organizes the given percentages in a clear and structured manner using the stem-and-leaf plot format.