Select the correct answer.

Two points located on [tex]$\stackrel{\rightharpoonup}{JK}$[/tex] are [tex]$J(-1,-9)$[/tex] and [tex]$K(5,3)$[/tex]. What is the slope of [tex]$\stackrel{\rightharpoonup}{JK}$[/tex]?

A. [tex]$-2$[/tex]
B. [tex]$-\frac{1}{2}$[/tex]
C. [tex]$\frac{1}{2}$[/tex]
D. [tex]$2$[/tex]



Answer :

To find the slope of the line segment [tex]\(\overrightarrow{JK}\)[/tex] passing through the points [tex]\( J(-1, -9) \)[/tex] and [tex]\( K(5, 3) \)[/tex], we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\((x_1, y_1)\)[/tex] is the point [tex]\(J(-1, -9)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is the point [tex]\(K(5, 3)\)[/tex]. Substituting these coordinates into the slope formula, we get:

[tex]\[ m = \frac{3 - (-9)}{5 - (-1)} \][/tex]

Simplify the terms in the numerator and the denominator:

[tex]\[ m = \frac{3 + 9}{5 + 1} \][/tex]

This simplifies to:

[tex]\[ m = \frac{12}{6} \][/tex]

Further simplifying the fraction gives us:

[tex]\[ m = 2 \][/tex]

Therefore, the correct answer is:
D. 2