A satellite launch rocket has a cylindrical fuel tank. The fuel tank can hold [tex]$V$[/tex] cubic meters of fuel. If the tank measures [tex]$d$[/tex] meters across, what is the height of the tank in meters?

A. [tex]\frac{2 V}{\pi d^2}[/tex]

B. [tex]\frac{4 V}{d^2}[/tex]

C. [tex]\frac{V}{\pi d^2}[/tex]

D. [tex]\frac{4 V}{\pi d^2}[/tex]

E. [tex]\frac{8 V}{\pi d^2}[/tex]



Answer :

To determine the height [tex]\( h \)[/tex] of a cylindrical fuel tank given its volume [tex]\( V \)[/tex] and diameter [tex]\( d \)[/tex], we can use the formula for the volume of a cylinder. The volume [tex]\( V \)[/tex] of a cylinder is given by:

[tex]\[ V = \pi r^2 h \][/tex]

where [tex]\( r \)[/tex] is the radius of the base of the cylinder and [tex]\( h \)[/tex] is its height.

Since the diameter [tex]\( d \)[/tex] of the tank is given, we can express the radius [tex]\( r \)[/tex] as:

[tex]\[ r = \frac{d}{2} \][/tex]

Now, substituting [tex]\( r \)[/tex] into the volume formula gives:

[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]

Simplify the expression:

[tex]\[ V = \pi \left( \frac{d^2}{4} \right) h \][/tex]

Rearranging to solve for the height [tex]\( h \)[/tex]:

[tex]\[ V = \frac{\pi d^2 h}{4} \][/tex]

Multiplying both sides by 4:

[tex]\[ 4V = \pi d^2 h \][/tex]

Finally, dividing both sides by [tex]\(\pi d^2\)[/tex]:

[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]

Therefore, the correct expression for the height [tex]\( h \)[/tex] of the fuel tank is:

[tex]\[ \boxed{\frac{4 V}{\pi d^2}} \][/tex]

Among the given options, the correct answer is:

D. [tex]\(\frac{4V}{\pi d^2}\)[/tex]