Melissa and Tomas are playing a game with complex numbers. If Melissa has a score of [tex]$3 + 2i$[/tex] and Tomas has a score of [tex]$5 + 4i$[/tex], what is their total score?

A. [tex][tex]$8 - 6i$[/tex][/tex]
B. [tex]$8 + 6i$[/tex]
C. [tex]$8 - 2i$[/tex]
D. [tex][tex]$8 + 2i$[/tex][/tex]



Answer :

Certainly! Let's solve this step-by-step.

1. Identify the scores: We need to clarify the scores given for Melissa and Tomas in the question.
- Melissa's score: [tex]\( 3 + 2i \)[/tex]
- Tomas's score: [tex]\( 8 - 6i \)[/tex]

2. Addition of complex numbers: To find the total score, we add the real parts and the imaginary parts separately.

- Real Parts:
- Melissa's real part: [tex]\( 3 \)[/tex]
- Tomas's real part: [tex]\( 8 \)[/tex]
- Sum of real parts: [tex]\( 3 + 8 = 11 \)[/tex]

- Imaginary Parts:
- Melissa's imaginary part: [tex]\( 2i \)[/tex]
- Tomas's imaginary part: [tex]\( -6i \)[/tex]
- Sum of imaginary parts: [tex]\( 2i + (-6i) = 2i - 6i = -4i \)[/tex]

3. Combine the sums: Combining the sum of the real parts and the sum of the imaginary parts, we get the total score:
[tex]\[ 11 + (-4i) = 11 - 4i \][/tex]

Therefore, Melissa and Tomas's total score is:
[tex]\[ \boxed{11 - 4i} \][/tex]