Select the correct answer.

A company manufactures computers. Function [tex]\( N \)[/tex] represents the number of components that a new employee can assemble per day. Function [tex]\( E \)[/tex] represents the number of components that an experienced employee can assemble per day. In both functions, [tex]\( t \)[/tex] represents the number of hours worked in one day.
[tex]\[
\begin{array}{l}
N(t) = \frac{50t}{t+4} \\
E(t) = \frac{70t}{t+3}
\end{array}
\][/tex]

Which function describes the difference in the number of components assembled per day by experienced and new employees?

A. [tex]\(\quad D(t) = \frac{10t(2t + 13)}{(t+3)(t+4)}\)[/tex]

B. [tex]\( D(t) = \frac{10t(2t + 13)}{t+3} \)[/tex]

C. [tex]\( D(t) = \frac{10t(2t - 13)}{t+4} \)[/tex]

D. [tex]\( D(t) = \frac{10t(2t - 13)}{(t+3)(t+4)} \)[/tex]



Answer :

To find which function describes the difference in the number of components assembled per day by experienced and new employees, we need to subtract [tex]\( N(t) \)[/tex] from [tex]\( E(t) \)[/tex]:

Given:
[tex]\[ N(t) = \frac{50t}{t+4} \][/tex]
[tex]\[ E(t) = \frac{70t}{t+3} \][/tex]

We need to find [tex]\( D(t) = E(t) - N(t) \)[/tex].

Let’s compute this step-by-step.

First, express [tex]\( E(t) \)[/tex] and [tex]\( N(t) \)[/tex] with a common denominator:

[tex]\[ E(t) = \frac{70t}{t+3} \][/tex]
[tex]\[ N(t) = \frac{50t}{t+4} \][/tex]

The common denominator for the two fractions is [tex]\((t + 3)(t + 4)\)[/tex].

So, we rewrite [tex]\( E(t) \)[/tex] and [tex]\( N(t) \)[/tex] with the common denominator:

[tex]\[ E(t) = \frac{70t \cdot (t+4)}{(t+3)(t+4)} = \frac{70t^2 + 280t}{(t+3)(t+4)} \][/tex]
[tex]\[ N(t) = \frac{50t \cdot (t+3)}{(t+3)(t+4)} = \frac{50t^2 + 150t}{(t+3)(t+4)} \][/tex]

Now, subtract [tex]\( N(t) \)[/tex] from [tex]\( E(t) \)[/tex]:

[tex]\[ D(t) = \frac{70t^2 + 280t - (50t^2 + 150t)}{(t+3)(t+4)} \][/tex]
[tex]\[ D(t) = \frac{70t^2 + 280t - 50t^2 - 150t}{(t+3)(t+4)} \][/tex]
[tex]\[ D(t) = \frac{(70t^2 - 50t^2) + (280t - 150t)}{(t+3)(t+4)} \][/tex]
[tex]\[ D(t) = \frac{20t^2 + 130t}{(t+3)(t+4)} \][/tex]
[tex]\[ D(t) = \frac{10t(2t + 13)}{(t+3)(t+4)} \][/tex]

Therefore, the correct function that describes the difference in the number of components assembled per day by experienced and new employees is:

[tex]\[ D(t) = \frac{10t(2t + 13)}{(t+3)(t+4)} \][/tex]

So, the correct option is:
A. [tex]\(\quad D(t)=\frac{10 t(2 t+13)}{(t+3)(t+4)}\)[/tex]