Answer :
To solve the expression [tex]\(6a + 2b - 3a + 4b - 3\)[/tex] when [tex]\(a = 3\)[/tex] and [tex]\(b = 2\)[/tex], we can break down the problem into a few manageable steps.
1. Substitute the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the expression:
Substitute [tex]\(a = 3\)[/tex] and [tex]\(b = 2\)[/tex] into the expression:
[tex]\[ 6(3) + 2(2) - 3(3) + 4(2) - 3 \][/tex]
2. Perform the multiplication for each term:
[tex]\[ 6 \cdot 3 = 18 \][/tex]
[tex]\[ 2 \cdot 2 = 4 \][/tex]
[tex]\[ 3 \cdot 3 = 9 \][/tex]
[tex]\[ 4 \cdot 2 = 8 \][/tex]
Thus, the expression now becomes:
[tex]\[ 18 + 4 - 9 + 8 - 3 \][/tex]
3. Combine the results step-by-step:
First, add the positive terms:
[tex]\[ 18 + 4 + 8 = 30 \][/tex]
Then, subtract the negative terms:
[tex]\[ 30 - 9 = 21 \][/tex]
[tex]\[ 21 - 3 = 18 \][/tex]
Therefore, the sum of the expression [tex]\(6a + 2b - 3a + 4b - 3\)[/tex] when [tex]\(a = 3\)[/tex] and [tex]\(b = 2\)[/tex] is [tex]\(18\)[/tex].
1. Substitute the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the expression:
Substitute [tex]\(a = 3\)[/tex] and [tex]\(b = 2\)[/tex] into the expression:
[tex]\[ 6(3) + 2(2) - 3(3) + 4(2) - 3 \][/tex]
2. Perform the multiplication for each term:
[tex]\[ 6 \cdot 3 = 18 \][/tex]
[tex]\[ 2 \cdot 2 = 4 \][/tex]
[tex]\[ 3 \cdot 3 = 9 \][/tex]
[tex]\[ 4 \cdot 2 = 8 \][/tex]
Thus, the expression now becomes:
[tex]\[ 18 + 4 - 9 + 8 - 3 \][/tex]
3. Combine the results step-by-step:
First, add the positive terms:
[tex]\[ 18 + 4 + 8 = 30 \][/tex]
Then, subtract the negative terms:
[tex]\[ 30 - 9 = 21 \][/tex]
[tex]\[ 21 - 3 = 18 \][/tex]
Therefore, the sum of the expression [tex]\(6a + 2b - 3a + 4b - 3\)[/tex] when [tex]\(a = 3\)[/tex] and [tex]\(b = 2\)[/tex] is [tex]\(18\)[/tex].