Solve for [tex]$x$[/tex] using the asterisk method, if possible:

[tex]$12x^2 - 22x - 20 = 0$[/tex]

Be sure to enter the smaller solution first. Give your answer as a fraction if necessary.

The smaller solution is [tex][tex]$x = \square$[/tex][/tex].

The larger solution is [tex]$x = \square$[/tex].

Enter "N" in the second blank if there is only one solution. Enter "N" in both blanks if there is no rational solution.



Answer :

To solve the quadratic equation [tex]\( 12x^2 - 22x - 20 = 0 \)[/tex] using the quadratic formula, we follow these steps:

The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

First, identify the coefficients in the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex]:
[tex]\[ a = 12, \quad b = -22, \quad c = -20 \][/tex]

Next, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{Discriminant} = (-22)^2 - 4 \cdot 12 \cdot (-20) \][/tex]
[tex]\[ \text{Discriminant} = 484 + 960 \][/tex]
[tex]\[ \text{Discriminant} = 1444 \][/tex]

Since the discriminant is positive ([tex]\(1444\)[/tex]), there are two distinct real solutions. We then use the quadratic formula to find these solutions:

[tex]\[ x_1 = \frac{-b + \sqrt{\text{Discriminant}}}{2a}, \quad x_2 = \frac{-b - \sqrt{\text{Discriminant}}}{2a} \][/tex]
[tex]\[ x_1 = \frac{-(-22) + \sqrt{1444}}{2 \cdot 12}, \quad x_2 = \frac{-(-22) - \sqrt{1444}}{2 \cdot 12} \][/tex]
[tex]\[ x_1 = \frac{22 + 38}{24}, \quad x_2 = \frac{22 - 38}{24} \][/tex]
[tex]\[ x_1 = \frac{60}{24}, \quad x_2 = \frac{-16}{24} \][/tex]
[tex]\[ x_1 = 2.5, \quad x_2 = -\frac{2}{3} \][/tex]

Thus, the two solutions are:
[tex]\[ \text{The smaller solution is } x = -\frac{2}{3} \][/tex]
[tex]\[ \text{The larger solution is } x = 2.5 \][/tex]

Therefore, the answers are:
[tex]\[ \text{The smaller solution is } x = -\frac{2}{3} \quad \text{(in fraction form, if possible)} \][/tex]
[tex]\[ \text{The larger solution is } x = 2.5 \][/tex]